Spaces:
Configuration error
Configuration error
File size: 97,305 Bytes
aaa69e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Utilities for spectral processing"""
import warnings
import numpy as np
import scipy
import scipy.ndimage
import scipy.signal
import scipy.interpolate
from numba import jit
from . import convert
from .fft import get_fftlib
from .audio import resample
from .._cache import cache
from .. import util
from ..util.exceptions import ParameterError
from ..filters import get_window, semitone_filterbank
from ..filters import window_sumsquare
from numpy.typing import DTypeLike
from typing import Any, Callable, Optional, Tuple, List, Union, overload
from typing_extensions import Literal
from .._typing import _WindowSpec, _PadMode, _PadModeSTFT
__all__ = [
"stft",
"istft",
"magphase",
"iirt",
"reassigned_spectrogram",
"phase_vocoder",
"perceptual_weighting",
"power_to_db",
"db_to_power",
"amplitude_to_db",
"db_to_amplitude",
"fmt",
"pcen",
"griffinlim",
]
@cache(level=20)
def stft(
y: np.ndarray,
*,
n_fft: int = 2048,
hop_length: Optional[int] = None,
win_length: Optional[int] = None,
window: _WindowSpec = "hann",
center: bool = True,
dtype: Optional[DTypeLike] = None,
pad_mode: _PadModeSTFT = "constant",
out: Optional[np.ndarray] = None,
) -> np.ndarray:
"""Short-time Fourier transform (STFT).
The STFT represents a signal in the time-frequency domain by
computing discrete Fourier transforms (DFT) over short overlapping
windows.
This function returns a complex-valued matrix D such that
- ``np.abs(D[..., f, t])`` is the magnitude of frequency bin ``f``
at frame ``t``, and
- ``np.angle(D[..., f, t])`` is the phase of frequency bin ``f``
at frame ``t``.
The integers ``t`` and ``f`` can be converted to physical units by means
of the utility functions `frames_to_samples` and `fft_frequencies`.
Parameters
----------
y : np.ndarray [shape=(..., n)], real-valued
input signal. Multi-channel is supported.
n_fft : int > 0 [scalar]
length of the windowed signal after padding with zeros.
The number of rows in the STFT matrix ``D`` is ``(1 + n_fft/2)``.
The default value, ``n_fft=2048`` samples, corresponds to a physical
duration of 93 milliseconds at a sample rate of 22050 Hz, i.e. the
default sample rate in librosa. This value is well adapted for music
signals. However, in speech processing, the recommended value is 512,
corresponding to 23 milliseconds at a sample rate of 22050 Hz.
In any case, we recommend setting ``n_fft`` to a power of two for
optimizing the speed of the fast Fourier transform (FFT) algorithm.
hop_length : int > 0 [scalar]
number of audio samples between adjacent STFT columns.
Smaller values increase the number of columns in ``D`` without
affecting the frequency resolution of the STFT.
If unspecified, defaults to ``win_length // 4`` (see below).
win_length : int <= n_fft [scalar]
Each frame of audio is windowed by ``window`` of length ``win_length``
and then padded with zeros to match ``n_fft``.
Smaller values improve the temporal resolution of the STFT (i.e. the
ability to discriminate impulses that are closely spaced in time)
at the expense of frequency resolution (i.e. the ability to discriminate
pure tones that are closely spaced in frequency). This effect is known
as the time-frequency localization trade-off and needs to be adjusted
according to the properties of the input signal ``y``.
If unspecified, defaults to ``win_length = n_fft``.
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
Either:
- a window specification (string, tuple, or number);
see `scipy.signal.get_window`
- a window function, such as `scipy.signal.windows.hann`
- a vector or array of length ``n_fft``
Defaults to a raised cosine window (`'hann'`), which is adequate for
most applications in audio signal processing.
.. see also:: `filters.get_window`
center : boolean
If ``True``, the signal ``y`` is padded so that frame
``D[:, t]`` is centered at ``y[t * hop_length]``.
If ``False``, then ``D[:, t]`` begins at ``y[t * hop_length]``.
Defaults to ``True``, which simplifies the alignment of ``D`` onto a
time grid by means of `librosa.frames_to_samples`.
Note, however, that ``center`` must be set to `False` when analyzing
signals with `librosa.stream`.
.. see also:: `librosa.stream`
dtype : np.dtype, optional
Complex numeric type for ``D``. Default is inferred to match the
precision of the input signal.
pad_mode : string or function
If ``center=True``, this argument is passed to `np.pad` for padding
the edges of the signal ``y``. By default (``pad_mode="constant"``),
``y`` is padded on both sides with zeros.
.. note:: Not all padding modes supported by `numpy.pad` are supported here.
`wrap`, `mean`, `maximum`, `median`, and `minimum` are not supported.
Other modes that depend at most on input values at the edges of the
signal (e.g., `constant`, `edge`, `linear_ramp`) are supported.
If ``center=False``, this argument is ignored.
.. see also:: `numpy.pad`
out : np.ndarray or None
A pre-allocated, complex-valued array to store the STFT results.
This must be of compatible shape and dtype for the given input parameters.
If `out` is larger than necessary for the provided input signal, then only
a prefix slice of `out` will be used.
If not provided, a new array is allocated and returned.
Returns
-------
D : np.ndarray [shape=(..., 1 + n_fft/2, n_frames), dtype=dtype]
Complex-valued matrix of short-term Fourier transform
coefficients.
If a pre-allocated `out` array is provided, then `D` will be
a reference to `out`.
If `out` is larger than necessary, then `D` will be a sliced
view: `D = out[..., :n_frames]`.
See Also
--------
istft : Inverse STFT
reassigned_spectrogram : Time-frequency reassigned spectrogram
Notes
-----
This function caches at level 20.
Examples
--------
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> S = np.abs(librosa.stft(y))
>>> S
array([[5.395e-03, 3.332e-03, ..., 9.862e-07, 1.201e-05],
[3.244e-03, 2.690e-03, ..., 9.536e-07, 1.201e-05],
...,
[7.523e-05, 3.722e-05, ..., 1.188e-04, 1.031e-03],
[7.640e-05, 3.944e-05, ..., 5.180e-04, 1.346e-03]],
dtype=float32)
Use left-aligned frames, instead of centered frames
>>> S_left = librosa.stft(y, center=False)
Use a shorter hop length
>>> D_short = librosa.stft(y, hop_length=64)
Display a spectrogram
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> img = librosa.display.specshow(librosa.amplitude_to_db(S,
... ref=np.max),
... y_axis='log', x_axis='time', ax=ax)
>>> ax.set_title('Power spectrogram')
>>> fig.colorbar(img, ax=ax, format="%+2.0f dB")
"""
# By default, use the entire frame
if win_length is None:
win_length = n_fft
# Set the default hop, if it's not already specified
if hop_length is None:
hop_length = int(win_length // 4)
elif not util.is_positive_int(hop_length):
raise ParameterError(f"hop_length={hop_length} must be a positive integer")
# Check audio is valid
util.valid_audio(y, mono=False)
fft_window = get_window(window, win_length, fftbins=True)
# Pad the window out to n_fft size
fft_window = util.pad_center(fft_window, size=n_fft)
# Reshape so that the window can be broadcast
fft_window = util.expand_to(fft_window, ndim=1 + y.ndim, axes=-2)
# Pad the time series so that frames are centered
if center:
if pad_mode in ("wrap", "maximum", "mean", "median", "minimum"):
# Note: padding with a user-provided function "works", but
# use at your own risk.
# Since we don't pass-through kwargs here, any arguments
# to a user-provided pad function should be encapsulated
# by using functools.partial:
#
# >>> my_pad_func = functools.partial(pad_func, foo=x, bar=y)
# >>> librosa.stft(..., pad_mode=my_pad_func)
raise ParameterError(
f"pad_mode='{pad_mode}' is not supported by librosa.stft"
)
if n_fft > y.shape[-1]:
warnings.warn(
f"n_fft={n_fft} is too large for input signal of length={y.shape[-1]}"
)
# Set up the padding array to be empty, and we'll fix the target dimension later
padding = [(0, 0) for _ in range(y.ndim)]
# How many frames depend on left padding?
start_k = int(np.ceil(n_fft // 2 / hop_length))
# What's the first frame that depends on extra right-padding?
tail_k = (y.shape[-1] + n_fft // 2 - n_fft) // hop_length + 1
if tail_k <= start_k:
# If tail and head overlap, then just copy-pad the signal and carry on
start = 0
extra = 0
padding[-1] = (n_fft // 2, n_fft // 2)
y = np.pad(y, padding, mode=pad_mode)
else:
# If tail and head do not overlap, then we can implement padding on each part separately
# and avoid a full copy-pad
# "Middle" of the signal starts here, and does not depend on head padding
start = start_k * hop_length - n_fft // 2
padding[-1] = (n_fft // 2, 0)
# +1 here is to ensure enough samples to fill the window
# fixes bug #1567
y_pre = np.pad(
y[..., : (start_k - 1) * hop_length - n_fft // 2 + n_fft + 1],
padding,
mode=pad_mode,
)
y_frames_pre = util.frame(y_pre, frame_length=n_fft, hop_length=hop_length)
# Trim this down to the exact number of frames we should have
y_frames_pre = y_frames_pre[..., :start_k]
# How many extra frames do we have from the head?
extra = y_frames_pre.shape[-1]
# Determine if we have any frames that will fit inside the tail pad
if tail_k * hop_length - n_fft // 2 + n_fft <= y.shape[-1] + n_fft // 2:
padding[-1] = (0, n_fft // 2)
y_post = np.pad(
y[..., (tail_k) * hop_length - n_fft // 2 :], padding, mode=pad_mode
)
y_frames_post = util.frame(
y_post, frame_length=n_fft, hop_length=hop_length
)
# How many extra frames do we have from the tail?
extra += y_frames_post.shape[-1]
else:
# In this event, the first frame that touches tail padding would run off
# the end of the padded array
# We'll circumvent this by allocating an empty frame buffer for the tail
# this keeps the subsequent logic simple
post_shape = list(y_frames_pre.shape)
post_shape[-1] = 0
y_frames_post = np.empty_like(y_frames_pre, shape=post_shape)
else:
if n_fft > y.shape[-1]:
raise ParameterError(
f"n_fft={n_fft} is too large for uncentered analysis of input signal of length={y.shape[-1]}"
)
# "Middle" of the signal starts at sample 0
start = 0
# We have no extra frames
extra = 0
fft = get_fftlib()
if dtype is None:
dtype = util.dtype_r2c(y.dtype)
# Window the time series.
y_frames = util.frame(y[..., start:], frame_length=n_fft, hop_length=hop_length)
# Pre-allocate the STFT matrix
shape = list(y_frames.shape)
# This is our frequency dimension
shape[-2] = 1 + n_fft // 2
# If there's padding, there will be extra head and tail frames
shape[-1] += extra
if out is None:
stft_matrix = np.zeros(shape, dtype=dtype, order="F")
elif not (np.allclose(out.shape[:-1], shape[:-1]) and out.shape[-1] >= shape[-1]):
raise ParameterError(
f"Shape mismatch for provided output array out.shape={out.shape} and target shape={shape}"
)
elif not np.iscomplexobj(out):
raise ParameterError(f"output with dtype={out.dtype} is not of complex type")
else:
if np.allclose(shape, out.shape):
stft_matrix = out
else:
stft_matrix = out[..., : shape[-1]]
# Fill in the warm-up
if center and extra > 0:
off_start = y_frames_pre.shape[-1]
stft_matrix[..., :off_start] = fft.rfft(fft_window * y_frames_pre, axis=-2)
off_end = y_frames_post.shape[-1]
if off_end > 0:
stft_matrix[..., -off_end:] = fft.rfft(fft_window * y_frames_post, axis=-2)
else:
off_start = 0
n_columns = int(
util.MAX_MEM_BLOCK // (np.prod(y_frames.shape[:-1]) * y_frames.itemsize)
)
n_columns = max(n_columns, 1)
for bl_s in range(0, y_frames.shape[-1], n_columns):
bl_t = min(bl_s + n_columns, y_frames.shape[-1])
stft_matrix[..., bl_s + off_start : bl_t + off_start] = fft.rfft(
fft_window * y_frames[..., bl_s:bl_t], axis=-2
)
return stft_matrix
@cache(level=30)
def istft(
stft_matrix: np.ndarray,
*,
hop_length: Optional[int] = None,
win_length: Optional[int] = None,
n_fft: Optional[int] = None,
window: _WindowSpec = "hann",
center: bool = True,
dtype: Optional[DTypeLike] = None,
length: Optional[int] = None,
out: Optional[np.ndarray] = None,
) -> np.ndarray:
"""
Inverse short-time Fourier transform (ISTFT).
Converts a complex-valued spectrogram ``stft_matrix`` to time-series ``y``
by minimizing the mean squared error between ``stft_matrix`` and STFT of
``y`` as described in [#]_ up to Section 2 (reconstruction from MSTFT).
In general, window function, hop length and other parameters should be same
as in stft, which mostly leads to perfect reconstruction of a signal from
unmodified ``stft_matrix``.
.. [#] D. W. Griffin and J. S. Lim,
"Signal estimation from modified short-time Fourier transform,"
IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984.
Parameters
----------
stft_matrix : np.ndarray [shape=(..., 1 + n_fft//2, t)]
STFT matrix from ``stft``
hop_length : int > 0 [scalar]
Number of frames between STFT columns.
If unspecified, defaults to ``win_length // 4``.
win_length : int <= n_fft = 2 * (stft_matrix.shape[0] - 1)
When reconstructing the time series, each frame is windowed
and each sample is normalized by the sum of squared window
according to the ``window`` function (see below).
If unspecified, defaults to ``n_fft``.
n_fft : int > 0 or None
The number of samples per frame in the input spectrogram.
By default, this will be inferred from the shape of ``stft_matrix``.
However, if an odd frame length was used, you can specify the correct
length by setting ``n_fft``.
window : string, tuple, number, function, np.ndarray [shape=(n_fft,)]
- a window specification (string, tuple, or number);
see `scipy.signal.get_window`
- a window function, such as `scipy.signal.windows.hann`
- a user-specified window vector of length ``n_fft``
.. see also:: `filters.get_window`
center : boolean
- If ``True``, ``D`` is assumed to have centered frames.
- If ``False``, ``D`` is assumed to have left-aligned frames.
dtype : numeric type
Real numeric type for ``y``. Default is to match the numerical
precision of the input spectrogram.
length : int > 0, optional
If provided, the output ``y`` is zero-padded or clipped to exactly
``length`` samples.
out : np.ndarray or None
A pre-allocated, complex-valued array to store the reconstructed signal
``y``. This must be of the correct shape for the given input parameters.
If not provided, a new array is allocated and returned.
Returns
-------
y : np.ndarray [shape=(..., n)]
time domain signal reconstructed from ``stft_matrix``.
If ``stft_matrix`` contains more than two axes
(e.g., from a stereo input signal), then ``y`` will match shape on the leading dimensions.
See Also
--------
stft : Short-time Fourier Transform
Notes
-----
This function caches at level 30.
Examples
--------
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> D = librosa.stft(y)
>>> y_hat = librosa.istft(D)
>>> y_hat
array([-1.407e-03, -4.461e-04, ..., 5.131e-06, -1.417e-05],
dtype=float32)
Exactly preserving length of the input signal requires explicit padding.
Otherwise, a partial frame at the end of ``y`` will not be represented.
>>> n = len(y)
>>> n_fft = 2048
>>> y_pad = librosa.util.fix_length(y, size=n + n_fft // 2)
>>> D = librosa.stft(y_pad, n_fft=n_fft)
>>> y_out = librosa.istft(D, length=n)
>>> np.max(np.abs(y - y_out))
8.940697e-08
"""
if n_fft is None:
n_fft = 2 * (stft_matrix.shape[-2] - 1)
# By default, use the entire frame
if win_length is None:
win_length = n_fft
# Set the default hop, if it's not already specified
if hop_length is None:
hop_length = int(win_length // 4)
ifft_window = get_window(window, win_length, fftbins=True)
# Pad out to match n_fft, and add broadcasting axes
ifft_window = util.pad_center(ifft_window, size=n_fft)
ifft_window = util.expand_to(ifft_window, ndim=stft_matrix.ndim, axes=-2)
# For efficiency, trim STFT frames according to signal length if available
if length:
if center:
padded_length = length + 2 * (n_fft // 2)
else:
padded_length = length
n_frames = min(stft_matrix.shape[-1], int(np.ceil(padded_length / hop_length)))
else:
n_frames = stft_matrix.shape[-1]
if dtype is None:
dtype = util.dtype_c2r(stft_matrix.dtype)
shape = list(stft_matrix.shape[:-2])
expected_signal_len = n_fft + hop_length * (n_frames - 1)
if length:
expected_signal_len = length
elif center:
expected_signal_len -= 2 * (n_fft // 2)
shape.append(expected_signal_len)
if out is None:
y = np.zeros(shape, dtype=dtype)
elif not np.allclose(out.shape, shape):
raise ParameterError(
f"Shape mismatch for provided output array out.shape={out.shape} != {shape}"
)
else:
y = out
# Since we'll be doing overlap-add here, this needs to be initialized to zero.
y.fill(0.0)
fft = get_fftlib()
if center:
# First frame that does not depend on padding
# k * hop_length - n_fft//2 >= 0
# k * hop_length >= n_fft // 2
# k >= (n_fft//2 / hop_length)
start_frame = int(np.ceil((n_fft // 2) / hop_length))
# Do overlap-add on the head block
ytmp = ifft_window * fft.irfft(stft_matrix[..., :start_frame], n=n_fft, axis=-2)
shape[-1] = n_fft + hop_length * (start_frame - 1)
head_buffer = np.zeros(shape, dtype=dtype)
__overlap_add(head_buffer, ytmp, hop_length)
# If y is smaller than the head buffer, take everything
if y.shape[-1] < shape[-1] - n_fft // 2:
y[..., :] = head_buffer[..., n_fft // 2 : y.shape[-1] + n_fft // 2]
else:
# Trim off the first n_fft//2 samples from the head and copy into target buffer
y[..., : shape[-1] - n_fft // 2] = head_buffer[..., n_fft // 2 :]
# This offset compensates for any differences between frame alignment
# and padding truncation
offset = start_frame * hop_length - n_fft // 2
else:
start_frame = 0
offset = 0
n_columns = int(
util.MAX_MEM_BLOCK // (np.prod(stft_matrix.shape[:-1]) * stft_matrix.itemsize)
)
n_columns = max(n_columns, 1)
frame = 0
for bl_s in range(start_frame, n_frames, n_columns):
bl_t = min(bl_s + n_columns, n_frames)
# invert the block and apply the window function
ytmp = ifft_window * fft.irfft(stft_matrix[..., bl_s:bl_t], n=n_fft, axis=-2)
# Overlap-add the istft block starting at the i'th frame
__overlap_add(y[..., frame * hop_length + offset :], ytmp, hop_length)
frame += bl_t - bl_s
# Normalize by sum of squared window
ifft_window_sum = window_sumsquare(
window=window,
n_frames=n_frames,
win_length=win_length,
n_fft=n_fft,
hop_length=hop_length,
dtype=dtype,
)
if center:
start = n_fft // 2
else:
start = 0
ifft_window_sum = util.fix_length(ifft_window_sum[..., start:], size=y.shape[-1])
approx_nonzero_indices = ifft_window_sum > util.tiny(ifft_window_sum)
y[..., approx_nonzero_indices] /= ifft_window_sum[approx_nonzero_indices]
return y
@jit(nopython=True, cache=False)
def __overlap_add(y, ytmp, hop_length):
# numba-accelerated overlap add for inverse stft
# y is the pre-allocated output buffer
# ytmp is the windowed inverse-stft frames
# hop_length is the hop-length of the STFT analysis
n_fft = ytmp.shape[-2]
N = n_fft
for frame in range(ytmp.shape[-1]):
sample = frame * hop_length
if N > y.shape[-1] - sample:
N = y.shape[-1] - sample
y[..., sample : (sample + N)] += ytmp[..., :N, frame]
def __reassign_frequencies(
y: np.ndarray,
sr: float = 22050,
S: Optional[np.ndarray] = None,
n_fft: int = 2048,
hop_length: Optional[int] = None,
win_length: Optional[int] = None,
window: _WindowSpec = "hann",
center: bool = True,
dtype: Optional[DTypeLike] = None,
pad_mode: _PadModeSTFT = "constant",
) -> Tuple[np.ndarray, np.ndarray]:
"""Instantaneous frequencies based on a spectrogram representation.
The reassignment vector is calculated using equation 5.20 in Flandrin,
Auger, & Chassande-Mottin 2002::
omega_reassigned = omega - np.imag(S_dh/S_h)
where ``S_h`` is the complex STFT calculated using the original window, and
``S_dh`` is the complex STFT calculated using the derivative of the original
window.
See `reassigned_spectrogram` for references.
It is recommended to use ``pad_mode="wrap"`` or else ``center=False``, rather
than the defaults. Frequency reassignment assumes that the energy in each
FFT bin is associated with exactly one signal component. Reflection padding
at the edges of the signal may invalidate the reassigned estimates in the
boundary frames.
Parameters
----------
y : np.ndarray [shape=(..., n,)], real-valued
audio time series. Multi-channel is supported.
sr : number > 0 [scalar]
sampling rate of ``y``
S : np.ndarray [shape=(..., d, t)] or None
(optional) complex STFT calculated using the other arguments provided
to `__reassign_frequencies`
n_fft : int > 0 [scalar]
FFT window size. Defaults to 2048.
hop_length : int > 0 [scalar]
hop length, number samples between subsequent frames.
If not supplied, defaults to ``win_length // 4``.
win_length : int > 0, <= n_fft
Window length. Defaults to ``n_fft``.
See ``stft`` for details.
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
- a window specification (string, tuple, number);
see `scipy.signal.get_window`
- a window function, such as `scipy.signal.windows.hann`
- a user-specified window vector of length ``n_fft``
See `stft` for details.
.. see also:: `filters.get_window`
center : boolean
- If ``True``, the signal ``y`` is padded so that frame
``S[:, t]`` is centered at ``y[t * hop_length]``.
- If ``False``, then ``S[:, t]`` begins at ``y[t * hop_length]``.
dtype : numeric type
Complex numeric type for ``S``. Default is inferred to match
the numerical precision of the input signal.
pad_mode : string
If ``center=True``, the padding mode to use at the edges of the signal.
By default, STFT uses zero padding.
Returns
-------
freqs : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=real]
Instantaneous frequencies:
``freqs[f, t]`` is the frequency for bin ``f``, frame ``t``.
S : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=complex]
Short-time Fourier transform
Warns
-----
RuntimeWarning
Frequencies with zero support will produce a divide-by-zero warning and
will be returned as `np.nan`.
See Also
--------
stft : Short-time Fourier Transform
reassigned_spectrogram : Time-frequency reassigned spectrogram
Examples
--------
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> frequencies, S = librosa.core.spectrum.__reassign_frequencies(y, sr=sr)
>>> frequencies
array([[0.000e+00, 0.000e+00, ..., 0.000e+00, 0.000e+00],
[3.628e+00, 4.698e+00, ..., 1.239e+01, 1.072e+01],
...,
[1.101e+04, 1.102e+04, ..., 1.105e+04, 1.102e+04],
[1.102e+04, 1.102e+04, ..., 1.102e+04, 1.102e+04]])
"""
# retrieve window samples if needed so that the window derivative can be
# calculated
if win_length is None:
win_length = n_fft
window = get_window(window, win_length, fftbins=True)
window = util.pad_center(window, size=n_fft)
if S is None:
if dtype is None:
dtype = util.dtype_r2c(y.dtype)
S_h = stft(
y=y,
n_fft=n_fft,
hop_length=hop_length,
window=window,
center=center,
dtype=dtype,
pad_mode=pad_mode,
)
else:
if dtype is None:
dtype = S.dtype
S_h = S
# cyclic gradient to correctly handle edges of a periodic window
window_derivative = util.cyclic_gradient(window)
S_dh = stft(
y=y,
n_fft=n_fft,
hop_length=hop_length,
window=window_derivative,
center=center,
dtype=dtype,
pad_mode=pad_mode,
)
# equation 5.20 of Flandrin, Auger, & Chassande-Mottin 2002
# the sign of the correction is reversed in some papers - see Plante,
# Meyer, & Ainsworth 1998 pp. 283-284
correction = -np.imag(S_dh / S_h)
freqs = convert.fft_frequencies(sr=sr, n_fft=n_fft)
freqs = util.expand_to(freqs, ndim=correction.ndim, axes=-2) + correction * (
0.5 * sr / np.pi
)
return freqs, S_h
def __reassign_times(
y: np.ndarray,
sr: float = 22050,
S: Optional[np.ndarray] = None,
n_fft: int = 2048,
hop_length: Optional[int] = None,
win_length: Optional[int] = None,
window: _WindowSpec = "hann",
center: bool = True,
dtype: Optional[DTypeLike] = None,
pad_mode: _PadModeSTFT = "constant",
) -> Tuple[np.ndarray, np.ndarray]:
"""Time reassignments based on a spectrogram representation.
The reassignment vector is calculated using equation 5.23 in Flandrin,
Auger, & Chassande-Mottin 2002::
t_reassigned = t + np.real(S_th/S_h)
where ``S_h`` is the complex STFT calculated using the original window, and
``S_th`` is the complex STFT calculated using the original window multiplied
by the time offset from the window center.
See `reassigned_spectrogram` for references.
It is recommended to use ``pad_mode="constant"`` (zero padding) or else
``center=False``, rather than the defaults. Time reassignment assumes that
the energy in each FFT bin is associated with exactly one impulse event.
Reflection padding at the edges of the signal may invalidate the reassigned
estimates in the boundary frames.
Parameters
----------
y : np.ndarray [shape=(..., n,)], real-valued
audio time series. Multi-channel is supported.
sr : number > 0 [scalar]
sampling rate of ``y``
S : np.ndarray [shape=(..., d, t)] or None
(optional) complex STFT calculated using the other arguments provided
to `__reassign_times`
n_fft : int > 0 [scalar]
FFT window size. Defaults to 2048.
hop_length : int > 0 [scalar]
hop length, number samples between subsequent frames.
If not supplied, defaults to ``win_length // 4``.
win_length : int > 0, <= n_fft
Window length. Defaults to ``n_fft``.
See `stft` for details.
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
- a window specification (string, tuple, number);
see `scipy.signal.get_window`
- a window function, such as `scipy.signal.windows.hann`
- a user-specified window vector of length ``n_fft``
See `stft` for details.
.. see also:: `filters.get_window`
center : boolean
- If ``True``, the signal ``y`` is padded so that frame
``S[:, t]`` is centered at ``y[t * hop_length]``.
- If ``False``, then ``S[:, t]`` begins at ``y[t * hop_length]``.
dtype : numeric type
Complex numeric type for ``S``. Default is inferred to match
the precision of the input signal.
pad_mode : string
If ``center=True``, the padding mode to use at the edges of the signal.
By default, STFT uses zero padding.
Returns
-------
times : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=real]
Reassigned times:
``times[f, t]`` is the time for bin ``f``, frame ``t``.
S : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=complex]
Short-time Fourier transform
Warns
-----
RuntimeWarning
Time estimates with zero support will produce a divide-by-zero warning
and will be returned as `np.nan`.
See Also
--------
stft : Short-time Fourier Transform
reassigned_spectrogram : Time-frequency reassigned spectrogram
Examples
--------
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> times, S = librosa.core.spectrum.__reassign_times(y, sr=sr)
>>> times
array([[ 2.268e-05, 1.144e-02, ..., 5.332e+00, 5.333e+00],
[ 2.268e-05, 1.451e-02, ..., 5.334e+00, 5.333e+00],
...,
[ 2.268e-05, -6.177e-04, ..., 5.368e+00, 5.327e+00],
[ 2.268e-05, 1.420e-03, ..., 5.307e+00, 5.328e+00]])
"""
# retrieve window samples if needed so that the time-weighted window can be
# calculated
if win_length is None:
win_length = n_fft
window = get_window(window, win_length, fftbins=True)
window = util.pad_center(window, size=n_fft)
# retrieve hop length if needed so that the frame times can be calculated
if hop_length is None:
hop_length = int(win_length // 4)
if S is None:
if dtype is None:
dtype = util.dtype_r2c(y.dtype)
S_h = stft(
y=y,
n_fft=n_fft,
hop_length=hop_length,
window=window,
center=center,
dtype=dtype,
pad_mode=pad_mode,
)
else:
if dtype is None:
dtype = S.dtype
S_h = S
# calculate window weighted by time
half_width = n_fft // 2
window_times: np.ndarray
if n_fft % 2:
window_times = np.arange(-half_width, half_width + 1)
else:
window_times = np.arange(0.5 - half_width, half_width)
window_time_weighted = window * window_times
S_th = stft(
y=y,
n_fft=n_fft,
hop_length=hop_length,
window=window_time_weighted,
center=center,
dtype=dtype,
pad_mode=pad_mode,
)
# equation 5.23 of Flandrin, Auger, & Chassande-Mottin 2002
# the sign of the correction is reversed in some papers - see Plante,
# Meyer, & Ainsworth 1998 pp. 283-284
correction = np.real(S_th / S_h)
if center:
pad_length = None
else:
pad_length = n_fft
times = convert.frames_to_time(
np.arange(S_h.shape[-1]), sr=sr, hop_length=hop_length, n_fft=pad_length
)
times = util.expand_to(times, ndim=correction.ndim, axes=-1) + correction / sr
return times, S_h
def reassigned_spectrogram(
y: np.ndarray,
*,
sr: float = 22050,
S: Optional[np.ndarray] = None,
n_fft: int = 2048,
hop_length: Optional[int] = None,
win_length: Optional[int] = None,
window: _WindowSpec = "hann",
center: bool = True,
reassign_frequencies: bool = True,
reassign_times: bool = True,
ref_power: Union[float, Callable] = 1e-6,
fill_nan: bool = False,
clip: bool = True,
dtype: Optional[DTypeLike] = None,
pad_mode: _PadModeSTFT = "constant",
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
r"""Time-frequency reassigned spectrogram.
The reassignment vectors are calculated using equations 5.20 and 5.23 in
[#]_::
t_reassigned = t + np.real(S_th/S_h)
omega_reassigned = omega - np.imag(S_dh/S_h)
where ``S_h`` is the complex STFT calculated using the original window,
``S_dh`` is the complex STFT calculated using the derivative of the original
window, and ``S_th`` is the complex STFT calculated using the original window
multiplied by the time offset from the window center. See [#]_ for
additional algorithms, and [#]_ and [#]_ for history and discussion of the
method.
.. [#] Flandrin, P., Auger, F., & Chassande-Mottin, E. (2002).
Time-Frequency reassignment: From principles to algorithms. In
Applications in Time-Frequency Signal Processing (Vol. 10, pp.
179-204). CRC Press.
.. [#] Fulop, S. A., & Fitz, K. (2006). Algorithms for computing the
time-corrected instantaneous frequency (reassigned) spectrogram, with
applications. The Journal of the Acoustical Society of America, 119(1),
360. doi:10.1121/1.2133000
.. [#] Auger, F., Flandrin, P., Lin, Y.-T., McLaughlin, S., Meignen, S.,
Oberlin, T., & Wu, H.-T. (2013). Time-Frequency Reassignment and
Synchrosqueezing: An Overview. IEEE Signal Processing Magazine, 30(6),
32-41. doi:10.1109/MSP.2013.2265316
.. [#] Hainsworth, S., Macleod, M. (2003). Time-frequency reassignment: a
review and analysis. Tech. Rep. CUED/FINFENG/TR.459, Cambridge
University Engineering Department
Parameters
----------
y : np.ndarray [shape=(..., n)], real-valued
audio time series. Multi-channel is supported.
sr : number > 0 [scalar]
sampling rate of ``y``
S : np.ndarray [shape=(..., d, t)] or None
(optional) complex STFT calculated using the other arguments provided
to ``reassigned_spectrogram``
n_fft : int > 0 [scalar]
FFT window size. Defaults to 2048.
hop_length : int > 0 [scalar]
hop length, number samples between subsequent frames.
If not supplied, defaults to ``win_length // 4``.
win_length : int > 0, <= n_fft
Window length. Defaults to ``n_fft``.
See `stft` for details.
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
- a window specification (string, tuple, number);
see `scipy.signal.get_window`
- a window function, such as `scipy.signal.windows.hann`
- a user-specified window vector of length ``n_fft``
See `stft` for details.
.. see also:: `filters.get_window`
center : boolean
- If ``True`` (default), the signal ``y`` is padded so that frame
``S[:, t]`` is centered at ``y[t * hop_length]``. See `Notes` for
recommended usage in this function.
- If ``False``, then ``S[:, t]`` begins at ``y[t * hop_length]``.
reassign_frequencies : boolean
- If ``True`` (default), the returned frequencies will be instantaneous
frequency estimates.
- If ``False``, the returned frequencies will be a read-only view of the
STFT bin frequencies for all frames.
reassign_times : boolean
- If ``True`` (default), the returned times will be corrected
(reassigned) time estimates for each bin.
- If ``False``, the returned times will be a read-only view of the STFT
frame times for all bins.
ref_power : float >= 0 or callable
Minimum power threshold for estimating time-frequency reassignments.
Any bin with ``np.abs(S[f, t])**2 < ref_power`` will be returned as
`np.nan` in both frequency and time, unless ``fill_nan`` is ``True``. If 0
is provided, then only bins with zero power will be returned as
`np.nan` (unless ``fill_nan=True``).
fill_nan : boolean
- If ``False`` (default), the frequency and time reassignments for bins
below the power threshold provided in ``ref_power`` will be returned as
`np.nan`.
- If ``True``, the frequency and time reassignments for these bins will
be returned as the bin center frequencies and frame times.
clip : boolean
- If ``True`` (default), estimated frequencies outside the range
`[0, 0.5 * sr]` or times outside the range `[0, len(y) / sr]` will be
clipped to those ranges.
- If ``False``, estimated frequencies and times beyond the bounds of the
spectrogram may be returned.
dtype : numeric type
Complex numeric type for STFT calculation. Default is inferred to match
the precision of the input signal.
pad_mode : string
If ``center=True``, the padding mode to use at the edges of the signal.
By default, STFT uses zero padding.
Returns
-------
freqs, times, mags : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=real]
Instantaneous frequencies:
``freqs[..., f, t]`` is the frequency for bin ``f``, frame ``t``.
If ``reassign_frequencies=False``, this will instead be a read-only array
of the same shape containing the bin center frequencies for all frames.
Reassigned times:
``times[..., f, t]`` is the time for bin ``f``, frame ``t``.
If ``reassign_times=False``, this will instead be a read-only array of
the same shape containing the frame times for all bins.
Magnitudes from short-time Fourier transform:
``mags[..., f, t]`` is the magnitude for bin ``f``, frame ``t``.
Warns
-----
RuntimeWarning
Frequency or time estimates with zero support will produce a
divide-by-zero warning, and will be returned as `np.nan` unless
``fill_nan=True``.
See Also
--------
stft : Short-time Fourier Transform
Notes
-----
It is recommended to use ``center=False`` with this function rather than the
librosa default ``True``. Unlike ``stft``, reassigned times are not aligned to
the left or center of each frame, so padding the signal does not affect the
meaning of the reassigned times. However, reassignment assumes that the
energy in each FFT bin is associated with exactly one signal component and
impulse event.
If ``reassign_times`` is ``False``, the frame times that are returned will be
aligned to the left or center of the frame, depending on the value of
``center``. In this case, if ``center`` is ``True``, then ``pad_mode="wrap"`` is
recommended for valid estimation of the instantaneous frequencies in the
boundary frames.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> amin = 1e-10
>>> n_fft = 64
>>> sr = 4000
>>> y = 1e-3 * librosa.clicks(times=[0.3], sr=sr, click_duration=1.0,
... click_freq=1200.0, length=8000) +\
... 1e-3 * librosa.clicks(times=[1.5], sr=sr, click_duration=0.5,
... click_freq=400.0, length=8000) +\
... 1e-3 * librosa.chirp(fmin=200, fmax=1600, sr=sr, duration=2.0) +\
... 1e-6 * np.random.randn(2*sr)
>>> freqs, times, mags = librosa.reassigned_spectrogram(y=y, sr=sr,
... n_fft=n_fft)
>>> mags_db = librosa.amplitude_to_db(mags, ref=np.max)
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
>>> img = librosa.display.specshow(mags_db, x_axis="s", y_axis="linear", sr=sr,
... hop_length=n_fft//4, ax=ax[0])
>>> ax[0].set(title="Spectrogram", xlabel=None)
>>> ax[0].label_outer()
>>> ax[1].scatter(times, freqs, c=mags_db, cmap="magma", alpha=0.1, s=5)
>>> ax[1].set_title("Reassigned spectrogram")
>>> fig.colorbar(img, ax=ax, format="%+2.f dB")
"""
if not callable(ref_power) and ref_power < 0:
raise ParameterError("ref_power must be non-negative or callable.")
if not reassign_frequencies and not reassign_times:
raise ParameterError("reassign_frequencies or reassign_times must be True.")
if win_length is None:
win_length = n_fft
if hop_length is None:
hop_length = int(win_length // 4)
# frequency and time reassignment if requested
if reassign_frequencies:
freqs, S = __reassign_frequencies(
y=y,
sr=sr,
S=S,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
center=center,
dtype=dtype,
pad_mode=pad_mode,
)
if reassign_times:
times, S = __reassign_times(
y=y,
sr=sr,
S=S,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
center=center,
dtype=dtype,
pad_mode=pad_mode,
)
assert S is not None
mags: np.ndarray = np.abs(S)
# clean up reassignment issues: divide-by-zero, bins with near-zero power,
# and estimates outside the spectrogram bounds
# retrieve bin frequencies and frame times to replace missing estimates
if fill_nan or not reassign_frequencies or not reassign_times:
if center:
pad_length = None
else:
pad_length = n_fft
bin_freqs = convert.fft_frequencies(sr=sr, n_fft=n_fft)
frame_times = convert.frames_to_time(
frames=np.arange(S.shape[-1]),
sr=sr,
hop_length=hop_length,
n_fft=pad_length,
)
# find bins below the power threshold
# reassigned bins with zero power will already be NaN
if callable(ref_power):
ref_p = ref_power(mags**2)
else:
ref_p = ref_power
mags_low = np.less(mags, ref_p**0.5, where=~np.isnan(mags))
# for reassigned estimates, optionally set thresholded bins to NaN, return
# bin frequencies and frame times in place of NaN generated by
# divide-by-zero and power threshold, and clip to spectrogram bounds
if reassign_frequencies:
if ref_p > 0:
freqs[mags_low] = np.nan
if fill_nan:
freqs = np.where(np.isnan(freqs), bin_freqs[:, np.newaxis], freqs)
if clip:
np.clip(freqs, 0, sr / 2.0, out=freqs)
# or if reassignment was not requested, return bin frequencies and frame
# times for every cell is the spectrogram
else:
freqs = np.broadcast_to(bin_freqs[:, np.newaxis], S.shape)
if reassign_times:
if ref_p > 0:
times[mags_low] = np.nan
if fill_nan:
times = np.where(np.isnan(times), frame_times[np.newaxis, :], times)
if clip:
np.clip(times, 0, y.shape[-1] / float(sr), out=times)
else:
times = np.broadcast_to(frame_times[np.newaxis, :], S.shape)
return freqs, times, mags
def magphase(D: np.ndarray, *, power: float = 1) -> Tuple[np.ndarray, np.ndarray]:
"""Separate a complex-valued spectrogram D into its magnitude (S)
and phase (P) components, so that ``D = S * P``.
Parameters
----------
D : np.ndarray [shape=(..., d, t), dtype=complex]
complex-valued spectrogram
power : float > 0
Exponent for the magnitude spectrogram,
e.g., 1 for energy, 2 for power, etc.
Returns
-------
D_mag : np.ndarray [shape=(..., d, t), dtype=real]
magnitude of ``D``, raised to ``power``
D_phase : np.ndarray [shape=(..., d, t), dtype=complex]
``exp(1.j * phi)`` where ``phi`` is the phase of ``D``
Examples
--------
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> D = librosa.stft(y)
>>> magnitude, phase = librosa.magphase(D)
>>> magnitude
array([[5.395e-03, 3.332e-03, ..., 9.862e-07, 1.201e-05],
[3.244e-03, 2.690e-03, ..., 9.536e-07, 1.201e-05],
...,
[7.523e-05, 3.722e-05, ..., 1.188e-04, 1.031e-03],
[7.640e-05, 3.944e-05, ..., 5.180e-04, 1.346e-03]],
dtype=float32)
>>> phase
array([[ 1. +0.000e+00j, 1. +0.000e+00j, ...,
-1. -8.742e-08j, -1. -8.742e-08j],
[-1. -8.742e-08j, -0.775-6.317e-01j, ...,
-0.885-4.648e-01j, 0.472-8.815e-01j],
...,
[ 1. -4.342e-12j, 0.028-9.996e-01j, ...,
-0.222-9.751e-01j, -0.75 -6.610e-01j],
[-1. -8.742e-08j, -1. -8.742e-08j, ...,
1. +0.000e+00j, 1. +0.000e+00j]], dtype=complex64)
Or get the phase angle (in radians)
>>> np.angle(phase)
array([[ 0.000e+00, 0.000e+00, ..., -3.142e+00, -3.142e+00],
[-3.142e+00, -2.458e+00, ..., -2.658e+00, -1.079e+00],
...,
[-4.342e-12, -1.543e+00, ..., -1.794e+00, -2.419e+00],
[-3.142e+00, -3.142e+00, ..., 0.000e+00, 0.000e+00]],
dtype=float32)
"""
mag = np.abs(D)
# Prevent NaNs and return magnitude 0, phase 1+0j for zero
zeros_to_ones = mag == 0
mag_nonzero = mag + zeros_to_ones
# Compute real and imaginary separately, because complex division can
# produce NaNs when denormalized numbers are involved (< ~2e-39 for
# complex64, ~5e-309 for complex128)
phase = np.empty_like(D, dtype=util.dtype_r2c(D.dtype))
phase.real = D.real / mag_nonzero + zeros_to_ones
phase.imag = D.imag / mag_nonzero
mag **= power
return mag, phase
def phase_vocoder(
D: np.ndarray,
*,
rate: float,
hop_length: Optional[int] = None,
n_fft: Optional[int] = None,
) -> np.ndarray:
"""Phase vocoder. Given an STFT matrix D, speed up by a factor of ``rate``
Based on the implementation provided by [#]_.
This is a simplified implementation, intended primarily for
reference and pedagogical purposes. It makes no attempt to
handle transients, and is likely to produce many audible
artifacts. For a higher quality implementation, we recommend
the RubberBand library [#]_ and its Python wrapper `pyrubberband`.
.. [#] Ellis, D. P. W. "A phase vocoder in Matlab."
Columbia University, 2002.
http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/
.. [#] https://breakfastquay.com/rubberband/
Examples
--------
>>> # Play at double speed
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> D = librosa.stft(y, n_fft=2048, hop_length=512)
>>> D_fast = librosa.phase_vocoder(D, rate=2.0, hop_length=512)
>>> y_fast = librosa.istft(D_fast, hop_length=512)
>>> # Or play at 1/3 speed
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> D = librosa.stft(y, n_fft=2048, hop_length=512)
>>> D_slow = librosa.phase_vocoder(D, rate=1./3, hop_length=512)
>>> y_slow = librosa.istft(D_slow, hop_length=512)
Parameters
----------
D : np.ndarray [shape=(..., d, t), dtype=complex]
STFT matrix
rate : float > 0 [scalar]
Speed-up factor: ``rate > 1`` is faster, ``rate < 1`` is slower.
hop_length : int > 0 [scalar] or None
The number of samples between successive columns of ``D``.
If None, defaults to ``n_fft//4 = (D.shape[0]-1)//2``
n_fft : int > 0 or None
The number of samples per frame in D.
By default (None), this will be inferred from the shape of D.
However, if D was constructed using an odd-length window, the correct
frame length can be specified here.
Returns
-------
D_stretched : np.ndarray [shape=(..., d, t / rate), dtype=complex]
time-stretched STFT
See Also
--------
pyrubberband
"""
if n_fft is None:
n_fft = 2 * (D.shape[-2] - 1)
if hop_length is None:
hop_length = int(n_fft // 4)
time_steps = np.arange(0, D.shape[-1], rate, dtype=np.float64)
# Create an empty output array
shape = list(D.shape)
shape[-1] = len(time_steps)
d_stretch = np.zeros_like(D, shape=shape)
# Expected phase advance in each bin
phi_advance = np.linspace(0, np.pi * hop_length, D.shape[-2])
# Phase accumulator; initialize to the first sample
phase_acc = np.angle(D[..., 0])
# Pad 0 columns to simplify boundary logic
padding = [(0, 0) for _ in D.shape]
padding[-1] = (0, 2)
D = np.pad(D, padding, mode="constant")
for t, step in enumerate(time_steps):
columns = D[..., int(step) : int(step + 2)]
# Weighting for linear magnitude interpolation
alpha = np.mod(step, 1.0)
mag = (1.0 - alpha) * np.abs(columns[..., 0]) + alpha * np.abs(columns[..., 1])
# Store to output array
d_stretch[..., t] = util.phasor(phase_acc, mag=mag)
# Compute phase advance
dphase = np.angle(columns[..., 1]) - np.angle(columns[..., 0]) - phi_advance
# Wrap to -pi:pi range
dphase = dphase - 2.0 * np.pi * np.round(dphase / (2.0 * np.pi))
# Accumulate phase
phase_acc += phi_advance + dphase
return d_stretch
@cache(level=20)
def iirt(
y: np.ndarray,
*,
sr: float = 22050,
win_length: int = 2048,
hop_length: Optional[int] = None,
center: bool = True,
tuning: float = 0.0,
pad_mode: _PadMode = "constant",
flayout: str = "sos",
res_type: str = "soxr_hq",
**kwargs: Any,
) -> np.ndarray:
r"""Time-frequency representation using IIR filters
This function will return a time-frequency representation
using a multirate filter bank consisting of IIR filters. [#]_
First, ``y`` is resampled as needed according to the provided ``sample_rates``.
Then, a filterbank with with ``n`` band-pass filters is designed.
The resampled input signals are processed by the filterbank as a whole.
(`scipy.signal.filtfilt` resp. `sosfiltfilt` is used to make the phase linear.)
The output of the filterbank is cut into frames.
For each band, the short-time mean-square power (STMSP) is calculated by
summing ``win_length`` subsequent filtered time samples.
When called with the default set of parameters, it will generate the TF-representation
(pitch filterbank):
* 85 filters with MIDI pitches [24, 108] as ``center_freqs``.
* each filter having a bandwidth of one semitone.
.. [#] Müller, Meinard.
"Information Retrieval for Music and Motion."
Springer Verlag. 2007.
Parameters
----------
y : np.ndarray [shape=(..., n)]
audio time series. Multi-channel is supported.
sr : number > 0 [scalar]
sampling rate of ``y``
win_length : int > 0, <= n_fft
Window length.
hop_length : int > 0 [scalar]
Hop length, number samples between subsequent frames.
If not supplied, defaults to ``win_length // 4``.
center : boolean
- If ``True``, the signal ``y`` is padded so that frame
``D[..., :, t]`` is centered at ``y[t * hop_length]``.
- If ``False``, then `D[..., :, t]`` begins at ``y[t * hop_length]``
tuning : float [scalar]
Tuning deviation from A440 in fractions of a bin.
pad_mode : string
If ``center=True``, the padding mode to use at the edges of the signal.
By default, this function uses zero padding.
flayout : string
- If `sos` (default), a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`.
Minimizes numerical precision errors for high-order filters, but is slower.
- If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`.
Can be unstable for high-order filters.
res_type : string
The resampling mode. See `librosa.resample` for details.
**kwargs : additional keyword arguments
Additional arguments for `librosa.filters.semitone_filterbank`
(e.g., could be used to provide another set of ``center_freqs`` and ``sample_rates``).
Returns
-------
bands_power : np.ndarray [shape=(..., n, t), dtype=dtype]
Short-time mean-square power for the input signal.
Raises
------
ParameterError
If ``flayout`` is not None, `ba`, or `sos`.
See Also
--------
librosa.filters.semitone_filterbank
librosa.filters.mr_frequencies
librosa.cqt
scipy.signal.filtfilt
scipy.signal.sosfiltfilt
Examples
--------
>>> import matplotlib.pyplot as plt
>>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3)
>>> D = np.abs(librosa.iirt(y))
>>> C = np.abs(librosa.cqt(y=y, sr=sr))
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
>>> img = librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max),
... y_axis='cqt_hz', x_axis='time', ax=ax[0])
>>> ax[0].set(title='Constant-Q transform')
>>> ax[0].label_outer()
>>> img = librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max),
... y_axis='cqt_hz', x_axis='time', ax=ax[1])
>>> ax[1].set_title('Semitone spectrogram (iirt)')
>>> fig.colorbar(img, ax=ax, format="%+2.0f dB")
"""
if flayout not in ("ba", "sos"):
raise ParameterError(f"Unsupported flayout={flayout}")
# check audio input
util.valid_audio(y, mono=False)
# Set the default hop, if it's not already specified
if hop_length is None:
hop_length = win_length // 4
# Pad the time series so that frames are centered
if center:
padding = [(0, 0) for _ in y.shape]
padding[-1] = (win_length // 2, win_length // 2)
y = np.pad(y, padding, mode=pad_mode)
# get the semitone filterbank
filterbank_ct, sample_rates = semitone_filterbank(
tuning=tuning, flayout=flayout, **kwargs
)
# create three downsampled versions of the audio signal
y_resampled = []
y_srs = np.unique(sample_rates)
for cur_sr in y_srs:
y_resampled.append(resample(y, orig_sr=sr, target_sr=cur_sr, res_type=res_type))
# Compute the number of frames that will fit. The end may get truncated.
n_frames = int(1 + (y.shape[-1] - win_length) // hop_length)
# Pre-allocate the output array
shape = list(y.shape)
# Time dimension reduces to n_frames
shape[-1] = n_frames
# Insert a new axis at position -2 for filter response
shape.insert(-1, len(filterbank_ct))
bands_power = np.empty_like(y, shape=shape)
slices: List[Union[int, slice]] = [slice(None) for _ in bands_power.shape]
for i, (cur_sr, cur_filter) in enumerate(zip(sample_rates, filterbank_ct)):
slices[-2] = i
# filter the signal
cur_sr_idx = np.flatnonzero(y_srs == cur_sr)[0]
if flayout == "ba":
cur_filter_output = scipy.signal.filtfilt(
cur_filter[0], cur_filter[1], y_resampled[cur_sr_idx], axis=-1
)
elif flayout == "sos":
cur_filter_output = scipy.signal.sosfiltfilt(
cur_filter, y_resampled[cur_sr_idx], axis=-1
)
factor = sr / cur_sr
hop_length_STMSP = hop_length / factor
win_length_STMSP_round = int(round(win_length / factor))
# hop_length_STMSP is used here as a floating-point number.
# The discretization happens at the end to avoid accumulated rounding errors.
start_idx = np.arange(
0, cur_filter_output.shape[-1] - win_length_STMSP_round, hop_length_STMSP
)
if len(start_idx) < n_frames:
min_length = (
int(np.ceil(n_frames * hop_length_STMSP)) + win_length_STMSP_round
)
cur_filter_output = util.fix_length(cur_filter_output, size=min_length)
start_idx = np.arange(
0,
cur_filter_output.shape[-1] - win_length_STMSP_round,
hop_length_STMSP,
)
start_idx = np.round(start_idx).astype(int)[:n_frames]
idx = np.add.outer(start_idx, np.arange(win_length_STMSP_round))
bands_power[tuple(slices)] = factor * np.sum(
cur_filter_output[..., idx] ** 2, axis=-1
)
return bands_power
@cache(level=30)
def power_to_db(
S: np.ndarray,
*,
ref: Union[float, Callable] = 1.0,
amin: float = 1e-10,
top_db: Optional[float] = 80.0,
) -> np.ndarray:
"""Convert a power spectrogram (amplitude squared) to decibel (dB) units
This computes the scaling ``10 * log10(S / ref)`` in a numerically
stable way.
Parameters
----------
S : np.ndarray
input power
ref : scalar or callable
If scalar, the amplitude ``abs(S)`` is scaled relative to ``ref``::
10 * log10(S / ref)
Zeros in the output correspond to positions where ``S == ref``.
If callable, the reference value is computed as ``ref(S)``.
amin : float > 0 [scalar]
minimum threshold for ``abs(S)`` and ``ref``
top_db : float >= 0 [scalar]
threshold the output at ``top_db`` below the peak:
``max(10 * log10(S/ref)) - top_db``
Returns
-------
S_db : np.ndarray
``S_db ~= 10 * log10(S) - 10 * log10(ref)``
See Also
--------
perceptual_weighting
db_to_power
amplitude_to_db
db_to_amplitude
Notes
-----
This function caches at level 30.
Examples
--------
Get a power spectrogram from a waveform ``y``
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> S = np.abs(librosa.stft(y))
>>> librosa.power_to_db(S**2)
array([[-41.809, -41.809, ..., -41.809, -41.809],
[-41.809, -41.809, ..., -41.809, -41.809],
...,
[-41.809, -41.809, ..., -41.809, -41.809],
[-41.809, -41.809, ..., -41.809, -41.809]], dtype=float32)
Compute dB relative to peak power
>>> librosa.power_to_db(S**2, ref=np.max)
array([[-80., -80., ..., -80., -80.],
[-80., -80., ..., -80., -80.],
...,
[-80., -80., ..., -80., -80.],
[-80., -80., ..., -80., -80.]], dtype=float32)
Or compare to median power
>>> librosa.power_to_db(S**2, ref=np.median)
array([[16.578, 16.578, ..., 16.578, 16.578],
[16.578, 16.578, ..., 16.578, 16.578],
...,
[16.578, 16.578, ..., 16.578, 16.578],
[16.578, 16.578, ..., 16.578, 16.578]], dtype=float32)
And plot the results
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
>>> imgpow = librosa.display.specshow(S**2, sr=sr, y_axis='log', x_axis='time',
... ax=ax[0])
>>> ax[0].set(title='Power spectrogram')
>>> ax[0].label_outer()
>>> imgdb = librosa.display.specshow(librosa.power_to_db(S**2, ref=np.max),
... sr=sr, y_axis='log', x_axis='time', ax=ax[1])
>>> ax[1].set(title='Log-Power spectrogram')
>>> fig.colorbar(imgpow, ax=ax[0])
>>> fig.colorbar(imgdb, ax=ax[1], format="%+2.0f dB")
"""
S = np.asarray(S)
if amin <= 0:
raise ParameterError("amin must be strictly positive")
if np.issubdtype(S.dtype, np.complexfloating):
warnings.warn(
"power_to_db was called on complex input so phase "
"information will be discarded. To suppress this warning, "
"call power_to_db(np.abs(D)**2) instead.",
stacklevel=2,
)
magnitude = np.abs(S)
else:
magnitude = S
if callable(ref):
# User supplied a function to calculate reference power
ref_value = ref(magnitude)
else:
ref_value = np.abs(ref)
log_spec: np.ndarray = 10.0 * np.log10(np.maximum(amin, magnitude))
log_spec -= 10.0 * np.log10(np.maximum(amin, ref_value))
if top_db is not None:
if top_db < 0:
raise ParameterError("top_db must be non-negative")
log_spec = np.maximum(log_spec, log_spec.max() - top_db)
return log_spec
@cache(level=30)
def db_to_power(S_db: np.ndarray, *, ref: float = 1.0) -> np.ndarray:
"""Convert a dB-scale spectrogram to a power spectrogram.
This effectively inverts ``power_to_db``::
db_to_power(S_db) ~= ref * 10.0**(S_db / 10)
Parameters
----------
S_db : np.ndarray
dB-scaled spectrogram
ref : number > 0
Reference power: output will be scaled by this value
Returns
-------
S : np.ndarray
Power spectrogram
Notes
-----
This function caches at level 30.
"""
return ref * np.power(10.0, 0.1 * S_db)
@cache(level=30)
def amplitude_to_db(
S: np.ndarray,
*,
ref: Union[float, Callable] = 1.0,
amin: float = 1e-5,
top_db: Optional[float] = 80.0,
) -> np.ndarray:
"""Convert an amplitude spectrogram to dB-scaled spectrogram.
This is equivalent to ``power_to_db(S**2, ref=ref**2, amin=amin**2, top_db=top_db)``,
but is provided for convenience.
Parameters
----------
S : np.ndarray
input amplitude
ref : scalar or callable
If scalar, the amplitude ``abs(S)`` is scaled relative to ``ref``:
``20 * log10(S / ref)``.
Zeros in the output correspond to positions where ``S == ref``.
If callable, the reference value is computed as ``ref(S)``.
amin : float > 0 [scalar]
minimum threshold for ``S`` and ``ref``
top_db : float >= 0 [scalar]
threshold the output at ``top_db`` below the peak:
``max(20 * log10(S/ref)) - top_db``
Returns
-------
S_db : np.ndarray
``S`` measured in dB
See Also
--------
power_to_db, db_to_amplitude
Notes
-----
This function caches at level 30.
"""
S = np.asarray(S)
if np.issubdtype(S.dtype, np.complexfloating):
warnings.warn(
"amplitude_to_db was called on complex input so phase "
"information will be discarded. To suppress this warning, "
"call amplitude_to_db(np.abs(S)) instead.",
stacklevel=2,
)
magnitude = np.abs(S)
if callable(ref):
# User supplied a function to calculate reference power
ref_value = ref(magnitude)
else:
ref_value = np.abs(ref)
power = np.square(magnitude, out=magnitude)
return power_to_db(power, ref=ref_value**2, amin=amin**2, top_db=top_db)
@cache(level=30)
def db_to_amplitude(S_db: np.ndarray, *, ref: float = 1.0) -> np.ndarray:
"""Convert a dB-scaled spectrogram to an amplitude spectrogram.
This effectively inverts `amplitude_to_db`::
db_to_amplitude(S_db) ~= 10.0**(0.5 * S_db/10 + log10(ref))
Parameters
----------
S_db : np.ndarray
dB-scaled spectrogram
ref : number > 0
Optional reference power.
Returns
-------
S : np.ndarray
Linear magnitude spectrogram
Notes
-----
This function caches at level 30.
"""
return db_to_power(S_db, ref=ref**2) ** 0.5
@cache(level=30)
def perceptual_weighting(
S: np.ndarray, frequencies: np.ndarray, *, kind: str = "A", **kwargs: Any
) -> np.ndarray:
"""Perceptual weighting of a power spectrogram::
S_p[..., f, :] = frequency_weighting(f, 'A') + 10*log(S[..., f, :] / ref)
Parameters
----------
S : np.ndarray [shape=(..., d, t)]
Power spectrogram
frequencies : np.ndarray [shape=(d,)]
Center frequency for each row of` `S``
kind : str
The frequency weighting curve to use.
e.g. `'A'`, `'B'`, `'C'`, `'D'`, `None or 'Z'`
**kwargs : additional keyword arguments
Additional keyword arguments to `power_to_db`.
Returns
-------
S_p : np.ndarray [shape=(..., d, t)]
perceptually weighted version of ``S``
See Also
--------
power_to_db
Notes
-----
This function caches at level 30.
Examples
--------
Re-weight a CQT power spectrum, using peak power as reference
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('A1')))
>>> freqs = librosa.cqt_frequencies(C.shape[0],
... fmin=librosa.note_to_hz('A1'))
>>> perceptual_CQT = librosa.perceptual_weighting(C**2,
... freqs,
... ref=np.max)
>>> perceptual_CQT
array([[ -96.528, -97.101, ..., -108.561, -108.561],
[ -95.88 , -96.479, ..., -107.551, -107.551],
...,
[ -65.142, -53.256, ..., -80.098, -80.098],
[ -71.542, -53.197, ..., -80.311, -80.311]])
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
>>> img = librosa.display.specshow(librosa.amplitude_to_db(C,
... ref=np.max),
... fmin=librosa.note_to_hz('A1'),
... y_axis='cqt_hz', x_axis='time',
... ax=ax[0])
>>> ax[0].set(title='Log CQT power')
>>> ax[0].label_outer()
>>> imgp = librosa.display.specshow(perceptual_CQT, y_axis='cqt_hz',
... fmin=librosa.note_to_hz('A1'),
... x_axis='time', ax=ax[1])
>>> ax[1].set(title='Perceptually weighted log CQT')
>>> fig.colorbar(img, ax=ax[0], format="%+2.0f dB")
>>> fig.colorbar(imgp, ax=ax[1], format="%+2.0f dB")
"""
offset = convert.frequency_weighting(frequencies, kind=kind).reshape((-1, 1))
result: np.ndarray = offset + power_to_db(S, **kwargs)
return result
@cache(level=30)
def fmt(
y: np.ndarray,
*,
t_min: float = 0.5,
n_fmt: Optional[int] = None,
kind: str = "cubic",
beta: float = 0.5,
over_sample: float = 1,
axis: int = -1,
) -> np.ndarray:
"""The fast Mellin transform (FMT)
The Mellin of a signal `y` is performed by interpolating `y` on an exponential time
axis, applying a polynomial window, and then taking the discrete Fourier transform.
When the Mellin parameter (beta) is 1/2, it is also known as the scale transform. [#]_
The scale transform can be useful for audio analysis because its magnitude is invariant
to scaling of the domain (e.g., time stretching or compression). This is analogous
to the magnitude of the Fourier transform being invariant to shifts in the input domain.
.. [#] De Sena, Antonio, and Davide Rocchesso.
"A fast Mellin and scale transform."
EURASIP Journal on Applied Signal Processing 2007.1 (2007): 75-75.
.. [#] Cohen, L.
"The scale representation."
IEEE Transactions on Signal Processing 41, no. 12 (1993): 3275-3292.
Parameters
----------
y : np.ndarray, real-valued
The input signal(s). Can be multidimensional.
The target axis must contain at least 3 samples.
t_min : float > 0
The minimum time spacing (in samples).
This value should generally be less than 1 to preserve as much information as
possible.
n_fmt : int > 2 or None
The number of scale transform bins to use.
If None, then ``n_bins = over_sample * ceil(n * log((n-1)/t_min))`` is taken,
where ``n = y.shape[axis]``
kind : str
The type of interpolation to use when re-sampling the input.
See `scipy.interpolate.interp1d` for possible values.
Note that the default is to use high-precision (cubic) interpolation.
This can be slow in practice; if speed is preferred over accuracy,
then consider using ``kind='linear'``.
beta : float
The Mellin parameter. ``beta=0.5`` provides the scale transform.
over_sample : float >= 1
Over-sampling factor for exponential resampling.
axis : int
The axis along which to transform ``y``
Returns
-------
x_scale : np.ndarray [dtype=complex]
The scale transform of ``y`` along the ``axis`` dimension.
Raises
------
ParameterError
if ``n_fmt < 2`` or ``t_min <= 0``
or if ``y`` is not finite
or if ``y.shape[axis] < 3``.
Notes
-----
This function caches at level 30.
Examples
--------
>>> # Generate a signal and time-stretch it (with energy normalization)
>>> scale = 1.25
>>> freq = 3.0
>>> x1 = np.linspace(0, 1, num=1024, endpoint=False)
>>> x2 = np.linspace(0, 1, num=int(scale * len(x1)), endpoint=False)
>>> y1 = np.sin(2 * np.pi * freq * x1)
>>> y2 = np.sin(2 * np.pi * freq * x2) / np.sqrt(scale)
>>> # Verify that the two signals have the same energy
>>> np.sum(np.abs(y1)**2), np.sum(np.abs(y2)**2)
(255.99999999999997, 255.99999999999969)
>>> scale1 = librosa.fmt(y1, n_fmt=512)
>>> scale2 = librosa.fmt(y2, n_fmt=512)
>>> # And plot the results
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2)
>>> ax[0].plot(y1, label='Original')
>>> ax[0].plot(y2, linestyle='--', label='Stretched')
>>> ax[0].set(xlabel='time (samples)', title='Input signals')
>>> ax[0].legend()
>>> ax[1].semilogy(np.abs(scale1), label='Original')
>>> ax[1].semilogy(np.abs(scale2), linestyle='--', label='Stretched')
>>> ax[1].set(xlabel='scale coefficients', title='Scale transform magnitude')
>>> ax[1].legend()
>>> # Plot the scale transform of an onset strength autocorrelation
>>> y, sr = librosa.load(librosa.ex('choice'))
>>> odf = librosa.onset.onset_strength(y=y, sr=sr)
>>> # Auto-correlate with up to 10 seconds lag
>>> odf_ac = librosa.autocorrelate(odf, max_size=10 * sr // 512)
>>> # Normalize
>>> odf_ac = librosa.util.normalize(odf_ac, norm=np.inf)
>>> # Compute the scale transform
>>> odf_ac_scale = librosa.fmt(librosa.util.normalize(odf_ac), n_fmt=512)
>>> # Plot the results
>>> fig, ax = plt.subplots(nrows=3)
>>> ax[0].plot(odf, label='Onset strength')
>>> ax[0].set(xlabel='Time (frames)', title='Onset strength')
>>> ax[1].plot(odf_ac, label='Onset autocorrelation')
>>> ax[1].set(xlabel='Lag (frames)', title='Onset autocorrelation')
>>> ax[2].semilogy(np.abs(odf_ac_scale), label='Scale transform magnitude')
>>> ax[2].set(xlabel='scale coefficients')
"""
n = y.shape[axis]
if n < 3:
raise ParameterError(f"y.shape[{axis}]=={n} < 3")
if t_min <= 0:
raise ParameterError(f"t_min={t_min} must be a positive number")
if n_fmt is None:
if over_sample < 1:
raise ParameterError(f"over_sample={over_sample} must be >= 1")
# The base is the maximum ratio between adjacent samples
# Since the sample spacing is increasing, this is simply the
# ratio between the positions of the last two samples: (n-1)/(n-2)
log_base = np.log(n - 1) - np.log(n - 2)
n_fmt = int(np.ceil(over_sample * (np.log(n - 1) - np.log(t_min)) / log_base))
elif n_fmt < 3:
raise ParameterError(f"n_fmt=={n_fmt} < 3")
else:
log_base = (np.log(n_fmt - 1) - np.log(n_fmt - 2)) / over_sample
if not np.all(np.isfinite(y)):
raise ParameterError("y must be finite everywhere")
base = np.exp(log_base)
# original grid: signal covers [0, 1). This range is arbitrary, but convenient.
# The final sample is positioned at (n-1)/n, so we omit the endpoint
x = np.linspace(0, 1, num=n, endpoint=False)
# build the interpolator
f_interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=axis)
# build the new sampling grid
# exponentially spaced between t_min/n and 1 (exclusive)
# we'll go one past where we need, and drop the last sample
# When over-sampling, the last input sample contributions n_over samples.
# To keep the spacing consistent, we over-sample by n_over, and then
# trim the final samples.
n_over = int(np.ceil(over_sample))
x_exp = np.logspace(
(np.log(t_min) - np.log(n)) / log_base,
0,
num=n_fmt + n_over,
endpoint=False,
base=base,
)[:-n_over]
# Clean up any rounding errors at the boundaries of the interpolation
# The interpolator gets angry if we try to extrapolate, so clipping is necessary here.
if x_exp[0] < t_min or x_exp[-1] > float(n - 1.0) / n:
x_exp = np.clip(x_exp, float(t_min) / n, x[-1])
# Make sure that all sample points are unique
# This should never happen!
if len(np.unique(x_exp)) != len(x_exp):
raise ParameterError("Redundant sample positions in Mellin transform")
# Resample the signal
y_res = f_interp(x_exp)
# Broadcast the window correctly
shape = [1] * y_res.ndim
shape[axis] = -1
# Apply the window and fft
# Normalization is absorbed into the window here for expedience
fft = get_fftlib()
result: np.ndarray = fft.rfft(
y_res * ((x_exp**beta).reshape(shape) * np.sqrt(n) / n_fmt), axis=axis
)
return result
@overload
def pcen(
S: np.ndarray,
*,
sr: float = ...,
hop_length: int = ...,
gain: float = ...,
bias: float = ...,
power: float = ...,
time_constant: float = ...,
eps: float = ...,
b: Optional[float] = ...,
max_size: int = ...,
ref: Optional[np.ndarray] = ...,
axis: int = ...,
max_axis: Optional[int] = ...,
zi: Optional[np.ndarray] = ...,
return_zf: Literal[False] = ...,
) -> np.ndarray:
...
@overload
def pcen(
S: np.ndarray,
*,
sr: float = ...,
hop_length: int = ...,
gain: float = ...,
bias: float = ...,
power: float = ...,
time_constant: float = ...,
eps: float = ...,
b: Optional[float] = ...,
max_size: int = ...,
ref: Optional[np.ndarray] = ...,
axis: int = ...,
max_axis: Optional[int] = ...,
zi: Optional[np.ndarray] = ...,
return_zf: Literal[True],
) -> Tuple[np.ndarray, np.ndarray]:
...
@overload
def pcen(
S: np.ndarray,
*,
sr: float = ...,
hop_length: int = ...,
gain: float = ...,
bias: float = ...,
power: float = ...,
time_constant: float = ...,
eps: float = ...,
b: Optional[float] = ...,
max_size: int = ...,
ref: Optional[np.ndarray] = ...,
axis: int = ...,
max_axis: Optional[int] = ...,
zi: Optional[np.ndarray] = ...,
return_zf: bool = ...,
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
...
@cache(level=30)
def pcen(
S: np.ndarray,
*,
sr: float = 22050,
hop_length: int = 512,
gain: float = 0.98,
bias: float = 2,
power: float = 0.5,
time_constant: float = 0.400,
eps: float = 1e-6,
b: Optional[float] = None,
max_size: int = 1,
ref: Optional[np.ndarray] = None,
axis: int = -1,
max_axis: Optional[int] = None,
zi: Optional[np.ndarray] = None,
return_zf: bool = False,
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
"""Per-channel energy normalization (PCEN)
This function normalizes a time-frequency representation ``S`` by
performing automatic gain control, followed by nonlinear compression [#]_ ::
P[f, t] = (S / (eps + M[f, t])**gain + bias)**power - bias**power
IMPORTANT: the default values of eps, gain, bias, and power match the
original publication, in which ``S`` is a 40-band mel-frequency
spectrogram with 25 ms windowing, 10 ms frame shift, and raw audio values
in the interval [-2**31; 2**31-1[. If you use these default values, we
recommend to make sure that the raw audio is properly scaled to this
interval, and not to [-1, 1[ as is most often the case.
The matrix ``M`` is the result of applying a low-pass, temporal IIR filter
to ``S``::
M[f, t] = (1 - b) * M[f, t - 1] + b * S[f, t]
If ``b`` is not provided, it is calculated as::
b = (sqrt(1 + 4* T**2) - 1) / (2 * T**2)
where ``T = time_constant * sr / hop_length``. [#]_
This normalization is designed to suppress background noise and
emphasize foreground signals, and can be used as an alternative to
decibel scaling (`amplitude_to_db`).
This implementation also supports smoothing across frequency bins
by specifying ``max_size > 1``. If this option is used, the filtered
spectrogram ``M`` is computed as::
M[f, t] = (1 - b) * M[f, t - 1] + b * R[f, t]
where ``R`` has been max-filtered along the frequency axis, similar to
the SuperFlux algorithm implemented in `onset.onset_strength`::
R[f, t] = max(S[f - max_size//2: f + max_size//2, t])
This can be used to perform automatic gain control on signals that cross
or span multiple frequency bans, which may be desirable for spectrograms
with high frequency resolution.
.. [#] Wang, Y., Getreuer, P., Hughes, T., Lyon, R. F., & Saurous, R. A.
(2017, March). Trainable frontend for robust and far-field keyword spotting.
In Acoustics, Speech and Signal Processing (ICASSP), 2017
IEEE International Conference on (pp. 5670-5674). IEEE.
.. [#] Lostanlen, V., Salamon, J., McFee, B., Cartwright, M., Farnsworth, A.,
Kelling, S., and Bello, J. P. Per-Channel Energy Normalization: Why and How.
IEEE Signal Processing Letters, 26(1), 39-43.
Parameters
----------
S : np.ndarray (non-negative)
The input (magnitude) spectrogram
sr : number > 0 [scalar]
The audio sampling rate
hop_length : int > 0 [scalar]
The hop length of ``S``, expressed in samples
gain : number >= 0 [scalar]
The gain factor. Typical values should be slightly less than 1.
bias : number >= 0 [scalar]
The bias point of the nonlinear compression (default: 2)
power : number >= 0 [scalar]
The compression exponent. Typical values should be between 0 and 0.5.
Smaller values of ``power`` result in stronger compression.
At the limit ``power=0``, polynomial compression becomes logarithmic.
time_constant : number > 0 [scalar]
The time constant for IIR filtering, measured in seconds.
eps : number > 0 [scalar]
A small constant used to ensure numerical stability of the filter.
b : number in [0, 1] [scalar]
The filter coefficient for the low-pass filter.
If not provided, it will be inferred from ``time_constant``.
max_size : int > 0 [scalar]
The width of the max filter applied to the frequency axis.
If left as `1`, no filtering is performed.
ref : None or np.ndarray (shape=S.shape)
An optional pre-computed reference spectrum (``R`` in the above).
If not provided it will be computed from ``S``.
axis : int [scalar]
The (time) axis of the input spectrogram.
max_axis : None or int [scalar]
The frequency axis of the input spectrogram.
If `None`, and ``S`` is two-dimensional, it will be inferred
as the opposite from ``axis``.
If ``S`` is not two-dimensional, and ``max_size > 1``, an error
will be raised.
zi : np.ndarray
The initial filter delay values.
This may be the ``zf`` (final delay values) of a previous call to ``pcen``, or
computed by `scipy.signal.lfilter_zi`.
return_zf : bool
If ``True``, return the final filter delay values along with the PCEN output ``P``.
This is primarily useful in streaming contexts, where the final state of one
block of processing should be used to initialize the next block.
If ``False`` (default) only the PCEN values ``P`` are returned.
Returns
-------
P : np.ndarray, non-negative [shape=(n, m)]
The per-channel energy normalized version of ``S``.
zf : np.ndarray (optional)
The final filter delay values. Only returned if ``return_zf=True``.
See Also
--------
amplitude_to_db
librosa.onset.onset_strength
Examples
--------
Compare PCEN to log amplitude (dB) scaling on Mel spectra
>>> import matplotlib.pyplot as plt
>>> y, sr = librosa.load(librosa.ex('robin'))
>>> # We recommend scaling y to the range [-2**31, 2**31[ before applying
>>> # PCEN's default parameters. Furthermore, we use power=1 to get a
>>> # magnitude spectrum instead of a power spectrum.
>>> S = librosa.feature.melspectrogram(y=y, sr=sr, power=1)
>>> log_S = librosa.amplitude_to_db(S, ref=np.max)
>>> pcen_S = librosa.pcen(S * (2**31))
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
>>> img = librosa.display.specshow(log_S, x_axis='time', y_axis='mel', ax=ax[0])
>>> ax[0].set(title='log amplitude (dB)', xlabel=None)
>>> ax[0].label_outer()
>>> imgpcen = librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel', ax=ax[1])
>>> ax[1].set(title='Per-channel energy normalization')
>>> fig.colorbar(img, ax=ax[0], format="%+2.0f dB")
>>> fig.colorbar(imgpcen, ax=ax[1])
Compare PCEN with and without max-filtering
>>> pcen_max = librosa.pcen(S * (2**31), max_size=3)
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
>>> librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel', ax=ax[0])
>>> ax[0].set(title='Per-channel energy normalization (no max-filter)')
>>> ax[0].label_outer()
>>> img = librosa.display.specshow(pcen_max, x_axis='time', y_axis='mel', ax=ax[1])
>>> ax[1].set(title='Per-channel energy normalization (max_size=3)')
>>> fig.colorbar(img, ax=ax)
"""
if power < 0:
raise ParameterError(f"power={power} must be nonnegative")
if gain < 0:
raise ParameterError(f"gain={gain} must be non-negative")
if bias < 0:
raise ParameterError(f"bias={bias} must be non-negative")
if eps <= 0:
raise ParameterError(f"eps={eps} must be strictly positive")
if time_constant <= 0:
raise ParameterError(f"time_constant={time_constant} must be strictly positive")
if not util.is_positive_int(max_size):
raise ParameterError(f"max_size={max_size} must be a positive integer")
if b is None:
t_frames = time_constant * sr / float(hop_length)
# By default, this solves the equation for b:
# b**2 + (1 - b) / t_frames - 2 = 0
# which approximates the full-width half-max of the
# squared frequency response of the IIR low-pass filter
b = (np.sqrt(1 + 4 * t_frames**2) - 1) / (2 * t_frames**2)
if not 0 <= b <= 1:
raise ParameterError(f"b={b} must be between 0 and 1")
if np.issubdtype(S.dtype, np.complexfloating):
warnings.warn(
"pcen was called on complex input so phase "
"information will be discarded. To suppress this warning, "
"call pcen(np.abs(D)) instead.",
stacklevel=2,
)
S = np.abs(S)
if ref is None:
if max_size == 1:
ref = S
elif S.ndim == 1:
raise ParameterError(
"Max-filtering cannot be applied to 1-dimensional input"
)
else:
if max_axis is None:
if S.ndim != 2:
raise ParameterError(
f"Max-filtering a {S.ndim:d}-dimensional spectrogram "
"requires you to specify max_axis"
)
# if axis = 0, max_axis=1
# if axis = +- 1, max_axis = 0
max_axis = np.mod(1 - axis, 2)
ref = scipy.ndimage.maximum_filter1d(S, max_size, axis=max_axis)
if zi is None:
# Make sure zi matches dimension to input
shape = tuple([1] * ref.ndim)
zi = np.empty(shape)
zi[:] = scipy.signal.lfilter_zi([b], [1, b - 1])[:]
# Temporal integration
S_smooth: np.ndarray
zf: np.ndarray
S_smooth, zf = scipy.signal.lfilter([b], [1, b - 1], ref, zi=zi, axis=axis)
# Adaptive gain control
# Working in log-space gives us some stability, and a slight speedup
smooth = np.exp(-gain * (np.log(eps) + np.log1p(S_smooth / eps)))
# Dynamic range compression
S_out: np.ndarray
if power == 0:
S_out = np.log1p(S * smooth)
elif bias == 0:
S_out = np.exp(power * (np.log(S) + np.log(smooth)))
else:
S_out = (bias**power) * np.expm1(power * np.log1p(S * smooth / bias))
if return_zf:
return S_out, zf
else:
return S_out
def griffinlim(
S: np.ndarray,
*,
n_iter: int = 32,
hop_length: Optional[int] = None,
win_length: Optional[int] = None,
n_fft: Optional[int] = None,
window: _WindowSpec = "hann",
center: bool = True,
dtype: Optional[DTypeLike] = None,
length: Optional[int] = None,
pad_mode: _PadModeSTFT = "constant",
momentum: float = 0.99,
init: Optional[str] = "random",
random_state: Optional[
Union[int, np.random.RandomState, np.random.Generator]
] = None,
) -> np.ndarray:
"""Approximate magnitude spectrogram inversion using the "fast" Griffin-Lim algorithm.
Given a short-time Fourier transform magnitude matrix (``S``), the algorithm randomly
initializes phase estimates, and then alternates forward- and inverse-STFT
operations. [#]_
Note that this assumes reconstruction of a real-valued time-domain signal, and
that ``S`` contains only the non-negative frequencies (as computed by
`stft`).
The "fast" GL method [#]_ uses a momentum parameter to accelerate convergence.
.. [#] D. W. Griffin and J. S. Lim,
"Signal estimation from modified short-time Fourier transform,"
IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984.
.. [#] Perraudin, N., Balazs, P., & Søndergaard, P. L.
"A fast Griffin-Lim algorithm,"
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4),
Oct. 2013.
Parameters
----------
S : np.ndarray [shape=(..., n_fft // 2 + 1, t), non-negative]
An array of short-time Fourier transform magnitudes as produced by
`stft`.
n_iter : int > 0
The number of iterations to run
hop_length : None or int > 0
The hop length of the STFT. If not provided, it will default to ``n_fft // 4``
win_length : None or int > 0
The window length of the STFT. By default, it will equal ``n_fft``
n_fft : None or int > 0
The number of samples per frame.
By default, this will be inferred from the shape of ``S`` as an even number.
However, if an odd frame length was used, you can explicitly set ``n_fft``.
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
A window specification as supported by `stft` or `istft`
center : boolean
If ``True``, the STFT is assumed to use centered frames.
If ``False``, the STFT is assumed to use left-aligned frames.
dtype : np.dtype
Real numeric type for the time-domain signal. Default is inferred
to match the precision of the input spectrogram.
length : None or int > 0
If provided, the output ``y`` is zero-padded or clipped to exactly ``length``
samples.
pad_mode : string
If ``center=True``, the padding mode to use at the edges of the signal.
By default, STFT uses zero padding.
momentum : number >= 0
The momentum parameter for fast Griffin-Lim.
Setting this to 0 recovers the original Griffin-Lim method [1]_.
Values near 1 can lead to faster convergence, but above 1 may not converge.
init : None or 'random' [default]
If 'random' (the default), then phase values are initialized randomly
according to ``random_state``. This is recommended when the input ``S`` is
a magnitude spectrogram with no initial phase estimates.
If `None`, then the phase is initialized from ``S``. This is useful when
an initial guess for phase can be provided, or when you want to resume
Griffin-Lim from a previous output.
random_state : None, int, np.random.RandomState, or np.random.Generator
If int, random_state is the seed used by the random number generator
for phase initialization.
If `np.random.RandomState` or `np.random.Generator` instance, the random number
generator itself.
If `None`, defaults to the `np.random.default_rng()` object.
Returns
-------
y : np.ndarray [shape=(..., n)]
time-domain signal reconstructed from ``S``
See Also
--------
stft
istft
magphase
filters.get_window
Examples
--------
A basic STFT inverse example
>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> # Get the magnitude spectrogram
>>> S = np.abs(librosa.stft(y))
>>> # Invert using Griffin-Lim
>>> y_inv = librosa.griffinlim(S)
>>> # Invert without estimating phase
>>> y_istft = librosa.istft(S)
Wave-plot the results
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)
>>> librosa.display.waveshow(y, sr=sr, color='b', ax=ax[0])
>>> ax[0].set(title='Original', xlabel=None)
>>> ax[0].label_outer()
>>> librosa.display.waveshow(y_inv, sr=sr, color='g', ax=ax[1])
>>> ax[1].set(title='Griffin-Lim reconstruction', xlabel=None)
>>> ax[1].label_outer()
>>> librosa.display.waveshow(y_istft, sr=sr, color='r', ax=ax[2])
>>> ax[2].set_title('Magnitude-only istft reconstruction')
"""
if random_state is None:
rng = np.random.default_rng()
elif isinstance(random_state, int):
rng = np.random.RandomState(seed=random_state) # type: ignore
elif isinstance(random_state, (np.random.RandomState, np.random.Generator)):
rng = random_state # type: ignore
else:
raise ParameterError(f"Unsupported random_state={random_state!r}")
if momentum > 1:
warnings.warn(
f"Griffin-Lim with momentum={momentum} > 1 can be unstable. "
"Proceed with caution!",
stacklevel=2,
)
elif momentum < 0:
raise ParameterError(f"griffinlim() called with momentum={momentum} < 0")
# Infer n_fft from the spectrogram shape
if n_fft is None:
n_fft = 2 * (S.shape[-2] - 1)
# Infer the dtype from S
angles = np.empty(S.shape, dtype=util.dtype_r2c(S.dtype))
eps = util.tiny(angles)
if init == "random":
# randomly initialize the phase
angles[:] = util.phasor((2 * np.pi * rng.random(size=S.shape)))
elif init is None:
# Initialize an all ones complex matrix
angles[:] = 1.0
else:
raise ParameterError(f"init={init} must either None or 'random'")
# Place-holders for temporary data and reconstructed buffer
rebuilt = None
tprev = None
inverse = None
# Absorb magnitudes into angles
angles *= S
for _ in range(n_iter):
# Invert with our current estimate of the phases
inverse = istft(
angles,
hop_length=hop_length,
win_length=win_length,
n_fft=n_fft,
window=window,
center=center,
dtype=dtype,
length=length,
out=inverse,
)
# Rebuild the spectrogram
rebuilt = stft(
inverse,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
center=center,
pad_mode=pad_mode,
out=rebuilt,
)
# Update our phase estimates
angles[:] = rebuilt
if tprev is not None:
angles -= (momentum / (1 + momentum)) * tprev
angles /= np.abs(angles) + eps
angles *= S
# Store
rebuilt, tprev = tprev, rebuilt
# Return the final phase estimates
return istft(
angles,
hop_length=hop_length,
win_length=win_length,
n_fft=n_fft,
window=window,
center=center,
dtype=dtype,
length=length,
out=inverse,
)
def _spectrogram(
*,
y: Optional[np.ndarray] = None,
S: Optional[np.ndarray] = None,
n_fft: Optional[int] = 2048,
hop_length: Optional[int] = 512,
power: float = 1,
win_length: Optional[int] = None,
window: _WindowSpec = "hann",
center: bool = True,
pad_mode: _PadModeSTFT = "constant",
) -> Tuple[np.ndarray, int]:
"""Helper function to retrieve a magnitude spectrogram.
This is primarily used in feature extraction functions that can operate on
either audio time-series or spectrogram input.
Parameters
----------
y : None or np.ndarray
If provided, an audio time series
S : None or np.ndarray
Spectrogram input, optional
n_fft : int > 0
STFT window size
hop_length : int > 0
STFT hop length
power : float > 0
Exponent for the magnitude spectrogram,
e.g., 1 for energy, 2 for power, etc.
win_length : int <= n_fft [scalar]
Each frame of audio is windowed by ``window``.
The window will be of length ``win_length`` and then padded
with zeros to match ``n_fft``.
If unspecified, defaults to ``win_length = n_fft``.
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
- a window specification (string, tuple, or number);
see `scipy.signal.get_window`
- a window function, such as `scipy.signal.windows.hann`
- a vector or array of length ``n_fft``
.. see also:: `filters.get_window`
center : boolean
- If ``True``, the signal ``y`` is padded so that frame
``t`` is centered at ``y[t * hop_length]``.
- If ``False``, then frame ``t`` begins at ``y[t * hop_length]``
pad_mode : string
If ``center=True``, the padding mode to use at the edges of the signal.
By default, STFT uses zero padding.
Returns
-------
S_out : np.ndarray [dtype=np.float]
- If ``S`` is provided as input, then ``S_out == S``
- Else, ``S_out = |stft(y, ...)|**power``
n_fft : int > 0
- If ``S`` is provided, then ``n_fft`` is inferred from ``S``
- Else, copied from input
"""
if S is not None:
# Infer n_fft from spectrogram shape, but only if it mismatches
if n_fft is None or n_fft // 2 + 1 != S.shape[-2]:
n_fft = 2 * (S.shape[-2] - 1)
else:
# Otherwise, compute a magnitude spectrogram from input
if n_fft is None:
raise ParameterError(f"Unable to compute spectrogram with n_fft={n_fft}")
if y is None:
raise ParameterError(
"Input signal must be provided to compute a spectrogram"
)
S = (
np.abs(
stft(
y,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
center=center,
window=window,
pad_mode=pad_mode,
)
)
** power
)
return S, n_fft
|