Spaces:
Configuration error
Configuration error
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
"""Constant-Q transforms""" | |
import warnings | |
import numpy as np | |
from numba import jit | |
from . import audio | |
from .intervals import interval_frequencies | |
from .fft import get_fftlib | |
from .convert import cqt_frequencies, note_to_hz | |
from .spectrum import stft, istft | |
from .pitch import estimate_tuning | |
from .._cache import cache | |
from .. import filters | |
from .. import util | |
from ..util.exceptions import ParameterError | |
from numpy.typing import DTypeLike | |
from typing import Optional, Union, Collection, List | |
from .._typing import _WindowSpec, _PadMode, _FloatLike_co, _ensure_not_reachable | |
__all__ = ["cqt", "hybrid_cqt", "pseudo_cqt", "icqt", "griffinlim_cqt", "vqt"] | |
# TODO: ivqt, griffinlim_vqt | |
def cqt( | |
y: np.ndarray, | |
*, | |
sr: float = 22050, | |
hop_length: int = 512, | |
fmin: Optional[_FloatLike_co] = None, | |
n_bins: int = 84, | |
bins_per_octave: int = 12, | |
tuning: Optional[float] = 0.0, | |
filter_scale: float = 1, | |
norm: Optional[float] = 1, | |
sparsity: float = 0.01, | |
window: _WindowSpec = "hann", | |
scale: bool = True, | |
pad_mode: _PadMode = "constant", | |
res_type: Optional[str] = "soxr_hq", | |
dtype: Optional[DTypeLike] = None, | |
) -> np.ndarray: | |
"""Compute the constant-Q transform of an audio signal. | |
This implementation is based on the recursive sub-sampling method | |
described by [#]_. | |
.. [#] Schoerkhuber, Christian, and Anssi Klapuri. | |
"Constant-Q transform toolbox for music processing." | |
7th Sound and Music Computing Conference, Barcelona, Spain. 2010. | |
Parameters | |
---------- | |
y : np.ndarray [shape=(..., n)] | |
audio time series. Multi-channel is supported. | |
sr : number > 0 [scalar] | |
sampling rate of ``y`` | |
hop_length : int > 0 [scalar] | |
number of samples between successive CQT columns. | |
fmin : float > 0 [scalar] | |
Minimum frequency. Defaults to `C1 ~= 32.70 Hz` | |
n_bins : int > 0 [scalar] | |
Number of frequency bins, starting at ``fmin`` | |
bins_per_octave : int > 0 [scalar] | |
Number of bins per octave | |
tuning : None or float | |
Tuning offset in fractions of a bin. | |
If ``None``, tuning will be automatically estimated from the signal. | |
The minimum frequency of the resulting CQT will be modified to | |
``fmin * 2**(tuning / bins_per_octave)``. | |
filter_scale : float > 0 | |
Filter scale factor. Small values (<1) use shorter windows | |
for improved time resolution. | |
norm : {inf, -inf, 0, float > 0} | |
Type of norm to use for basis function normalization. | |
See `librosa.util.normalize`. | |
sparsity : float in [0, 1) | |
Sparsify the CQT basis by discarding up to ``sparsity`` | |
fraction of the energy in each basis. | |
Set ``sparsity=0`` to disable sparsification. | |
window : str, tuple, number, or function | |
Window specification for the basis filters. | |
See `filters.get_window` for details. | |
scale : bool | |
If ``True``, scale the CQT response by square-root the length of | |
each channel's filter. This is analogous to ``norm='ortho'`` in FFT. | |
If ``False``, do not scale the CQT. This is analogous to | |
``norm=None`` in FFT. | |
pad_mode : string | |
Padding mode for centered frame analysis. | |
See also: `librosa.stft` and `numpy.pad`. | |
res_type : string | |
The resampling mode for recursive downsampling. | |
dtype : np.dtype | |
The (complex) data type of the output array. By default, this is inferred to match | |
the numerical precision of the input signal. | |
Returns | |
------- | |
CQT : np.ndarray [shape=(..., n_bins, t)] | |
Constant-Q value each frequency at each time. | |
See Also | |
-------- | |
vqt | |
librosa.resample | |
librosa.util.normalize | |
Notes | |
----- | |
This function caches at level 20. | |
Examples | |
-------- | |
Generate and plot a constant-Q power spectrum | |
>>> import matplotlib.pyplot as plt | |
>>> y, sr = librosa.load(librosa.ex('trumpet')) | |
>>> C = np.abs(librosa.cqt(y, sr=sr)) | |
>>> fig, ax = plt.subplots() | |
>>> img = librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max), | |
... sr=sr, x_axis='time', y_axis='cqt_note', ax=ax) | |
>>> ax.set_title('Constant-Q power spectrum') | |
>>> fig.colorbar(img, ax=ax, format="%+2.0f dB") | |
Limit the frequency range | |
>>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'), | |
... n_bins=60)) | |
>>> C | |
array([[6.830e-04, 6.361e-04, ..., 7.362e-09, 9.102e-09], | |
[5.366e-04, 4.818e-04, ..., 8.953e-09, 1.067e-08], | |
..., | |
[4.288e-02, 4.580e-01, ..., 1.529e-05, 5.572e-06], | |
[2.965e-03, 1.508e-01, ..., 8.965e-06, 1.455e-05]]) | |
Using a higher frequency resolution | |
>>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'), | |
... n_bins=60 * 2, bins_per_octave=12 * 2)) | |
>>> C | |
array([[5.468e-04, 5.382e-04, ..., 5.911e-09, 6.105e-09], | |
[4.118e-04, 4.014e-04, ..., 7.788e-09, 8.160e-09], | |
..., | |
[2.780e-03, 1.424e-01, ..., 4.225e-06, 2.388e-05], | |
[5.147e-02, 6.959e-02, ..., 1.694e-05, 5.811e-06]]) | |
""" | |
# CQT is the special case of VQT with gamma=0 | |
return vqt( | |
y=y, | |
sr=sr, | |
hop_length=hop_length, | |
fmin=fmin, | |
n_bins=n_bins, | |
intervals="equal", | |
gamma=0, | |
bins_per_octave=bins_per_octave, | |
tuning=tuning, | |
filter_scale=filter_scale, | |
norm=norm, | |
sparsity=sparsity, | |
window=window, | |
scale=scale, | |
pad_mode=pad_mode, | |
res_type=res_type, | |
dtype=dtype, | |
) | |
def hybrid_cqt( | |
y: np.ndarray, | |
*, | |
sr: float = 22050, | |
hop_length: int = 512, | |
fmin: Optional[_FloatLike_co] = None, | |
n_bins: int = 84, | |
bins_per_octave: int = 12, | |
tuning: Optional[float] = 0.0, | |
filter_scale: float = 1, | |
norm: Optional[float] = 1, | |
sparsity: float = 0.01, | |
window: _WindowSpec = "hann", | |
scale: bool = True, | |
pad_mode: _PadMode = "constant", | |
res_type: str = "soxr_hq", | |
dtype: Optional[DTypeLike] = None, | |
) -> np.ndarray: | |
"""Compute the hybrid constant-Q transform of an audio signal. | |
Here, the hybrid CQT uses the pseudo CQT for higher frequencies where | |
the hop_length is longer than half the filter length and the full CQT | |
for lower frequencies. | |
Parameters | |
---------- | |
y : np.ndarray [shape=(..., n)] | |
audio time series. Multi-channel is supported. | |
sr : number > 0 [scalar] | |
sampling rate of ``y`` | |
hop_length : int > 0 [scalar] | |
number of samples between successive CQT columns. | |
fmin : float > 0 [scalar] | |
Minimum frequency. Defaults to `C1 ~= 32.70 Hz` | |
n_bins : int > 0 [scalar] | |
Number of frequency bins, starting at ``fmin`` | |
bins_per_octave : int > 0 [scalar] | |
Number of bins per octave | |
tuning : None or float | |
Tuning offset in fractions of a bin. | |
If ``None``, tuning will be automatically estimated from the signal. | |
The minimum frequency of the resulting CQT will be modified to | |
``fmin * 2**(tuning / bins_per_octave)``. | |
filter_scale : float > 0 | |
Filter filter_scale factor. Larger values use longer windows. | |
norm : {inf, -inf, 0, float > 0} | |
Type of norm to use for basis function normalization. | |
See `librosa.util.normalize`. | |
sparsity : float in [0, 1) | |
Sparsify the CQT basis by discarding up to ``sparsity`` | |
fraction of the energy in each basis. | |
Set ``sparsity=0`` to disable sparsification. | |
window : str, tuple, number, or function | |
Window specification for the basis filters. | |
See `filters.get_window` for details. | |
scale : bool | |
If ``True``, scale the CQT response by square-root the length of | |
each channel's filter. This is analogous to ``norm='ortho'`` in FFT. | |
If ``False``, do not scale the CQT. This is analogous to | |
``norm=None`` in FFT. | |
pad_mode : string | |
Padding mode for centered frame analysis. | |
See also: `librosa.stft` and `numpy.pad`. | |
res_type : string | |
Resampling mode. See `librosa.cqt` for details. | |
dtype : np.dtype, optional | |
The complex dtype to use for computing the CQT. | |
By default, this is inferred to match the precision of | |
the input signal. | |
Returns | |
------- | |
CQT : np.ndarray [shape=(..., n_bins, t), dtype=np.float] | |
Constant-Q energy for each frequency at each time. | |
See Also | |
-------- | |
cqt | |
pseudo_cqt | |
Notes | |
----- | |
This function caches at level 20. | |
""" | |
if fmin is None: | |
# C1 by default | |
fmin = note_to_hz("C1") | |
if tuning is None: | |
tuning = estimate_tuning(y=y, sr=sr, bins_per_octave=bins_per_octave) | |
# Apply tuning correction | |
fmin = fmin * 2.0 ** (tuning / bins_per_octave) | |
# Get all CQT frequencies | |
freqs = cqt_frequencies(n_bins, fmin=fmin, bins_per_octave=bins_per_octave) | |
# Compute an alpha parameter, just in case we need it | |
alpha = __bpo_to_alpha(bins_per_octave) | |
# Compute the length of each constant-Q basis function | |
lengths, _ = filters.wavelet_lengths( | |
freqs=freqs, sr=sr, filter_scale=filter_scale, window=window, alpha=alpha | |
) | |
# Determine which filters to use with Pseudo CQT | |
# These are the ones that fit within 2 hop lengths after padding | |
pseudo_filters = 2.0 ** np.ceil(np.log2(lengths)) < 2 * hop_length | |
n_bins_pseudo = int(np.sum(pseudo_filters)) | |
n_bins_full = n_bins - n_bins_pseudo | |
cqt_resp = [] | |
if n_bins_pseudo > 0: | |
fmin_pseudo = np.min(freqs[pseudo_filters]) | |
cqt_resp.append( | |
pseudo_cqt( | |
y, | |
sr=sr, | |
hop_length=hop_length, | |
fmin=fmin_pseudo, | |
n_bins=n_bins_pseudo, | |
bins_per_octave=bins_per_octave, | |
filter_scale=filter_scale, | |
norm=norm, | |
sparsity=sparsity, | |
window=window, | |
scale=scale, | |
pad_mode=pad_mode, | |
dtype=dtype, | |
) | |
) | |
if n_bins_full > 0: | |
cqt_resp.append( | |
np.abs( | |
cqt( | |
y, | |
sr=sr, | |
hop_length=hop_length, | |
fmin=fmin, | |
n_bins=n_bins_full, | |
bins_per_octave=bins_per_octave, | |
filter_scale=filter_scale, | |
norm=norm, | |
sparsity=sparsity, | |
window=window, | |
scale=scale, | |
pad_mode=pad_mode, | |
res_type=res_type, | |
dtype=dtype, | |
) | |
) | |
) | |
# Propagate dtype from the last component | |
return __trim_stack(cqt_resp, n_bins, cqt_resp[-1].dtype) | |
def pseudo_cqt( | |
y: np.ndarray, | |
*, | |
sr: float = 22050, | |
hop_length: int = 512, | |
fmin: Optional[_FloatLike_co] = None, | |
n_bins: int = 84, | |
bins_per_octave: int = 12, | |
tuning: Optional[float] = 0.0, | |
filter_scale: float = 1, | |
norm: Optional[float] = 1, | |
sparsity: float = 0.01, | |
window: _WindowSpec = "hann", | |
scale: bool = True, | |
pad_mode: _PadMode = "constant", | |
dtype: Optional[DTypeLike] = None, | |
) -> np.ndarray: | |
"""Compute the pseudo constant-Q transform of an audio signal. | |
This uses a single fft size that is the smallest power of 2 that is greater | |
than or equal to the max of: | |
1. The longest CQT filter | |
2. 2x the hop_length | |
Parameters | |
---------- | |
y : np.ndarray [shape=(..., n)] | |
audio time series. Multi-channel is supported. | |
sr : number > 0 [scalar] | |
sampling rate of ``y`` | |
hop_length : int > 0 [scalar] | |
number of samples between successive CQT columns. | |
fmin : float > 0 [scalar] | |
Minimum frequency. Defaults to `C1 ~= 32.70 Hz` | |
n_bins : int > 0 [scalar] | |
Number of frequency bins, starting at ``fmin`` | |
bins_per_octave : int > 0 [scalar] | |
Number of bins per octave | |
tuning : None or float | |
Tuning offset in fractions of a bin. | |
If ``None``, tuning will be automatically estimated from the signal. | |
The minimum frequency of the resulting CQT will be modified to | |
``fmin * 2**(tuning / bins_per_octave)``. | |
filter_scale : float > 0 | |
Filter filter_scale factor. Larger values use longer windows. | |
norm : {inf, -inf, 0, float > 0} | |
Type of norm to use for basis function normalization. | |
See `librosa.util.normalize`. | |
sparsity : float in [0, 1) | |
Sparsify the CQT basis by discarding up to ``sparsity`` | |
fraction of the energy in each basis. | |
Set ``sparsity=0`` to disable sparsification. | |
window : str, tuple, number, or function | |
Window specification for the basis filters. | |
See `filters.get_window` for details. | |
scale : bool | |
If ``True``, scale the CQT response by square-root the length of | |
each channel's filter. This is analogous to ``norm='ortho'`` in FFT. | |
If ``False``, do not scale the CQT. This is analogous to | |
``norm=None`` in FFT. | |
pad_mode : string | |
Padding mode for centered frame analysis. | |
See also: `librosa.stft` and `numpy.pad`. | |
dtype : np.dtype, optional | |
The complex data type for CQT calculations. | |
By default, this is inferred to match the precision of the input signal. | |
Returns | |
------- | |
CQT : np.ndarray [shape=(..., n_bins, t), dtype=np.float] | |
Pseudo Constant-Q energy for each frequency at each time. | |
Notes | |
----- | |
This function caches at level 20. | |
""" | |
if fmin is None: | |
# C1 by default | |
fmin = note_to_hz("C1") | |
if tuning is None: | |
tuning = estimate_tuning(y=y, sr=sr, bins_per_octave=bins_per_octave) | |
if dtype is None: | |
dtype = util.dtype_r2c(y.dtype) | |
# Apply tuning correction | |
fmin = fmin * 2.0 ** (tuning / bins_per_octave) | |
freqs = cqt_frequencies(fmin=fmin, n_bins=n_bins, bins_per_octave=bins_per_octave) | |
alpha = __bpo_to_alpha(bins_per_octave) | |
lengths, _ = filters.wavelet_lengths( | |
freqs=freqs, sr=sr, window=window, filter_scale=filter_scale, alpha=alpha | |
) | |
fft_basis, n_fft, _ = __vqt_filter_fft( | |
sr, | |
freqs, | |
filter_scale, | |
norm, | |
sparsity, | |
hop_length=hop_length, | |
window=window, | |
dtype=dtype, | |
alpha=alpha, | |
) | |
fft_basis = np.abs(fft_basis) | |
# Compute the magnitude-only CQT response | |
C: np.ndarray = __cqt_response( | |
y, | |
n_fft, | |
hop_length, | |
fft_basis, | |
pad_mode, | |
window="hann", | |
dtype=dtype, | |
phase=False, | |
) | |
if scale: | |
C /= np.sqrt(n_fft) | |
else: | |
# reshape lengths to match dimension properly | |
lengths = util.expand_to(lengths, ndim=C.ndim, axes=-2) | |
C *= np.sqrt(lengths / n_fft) | |
return C | |
def icqt( | |
C: np.ndarray, | |
*, | |
sr: float = 22050, | |
hop_length: int = 512, | |
fmin: Optional[_FloatLike_co] = None, | |
bins_per_octave: int = 12, | |
tuning: float = 0.0, | |
filter_scale: float = 1, | |
norm: Optional[float] = 1, | |
sparsity: float = 0.01, | |
window: _WindowSpec = "hann", | |
scale: bool = True, | |
length: Optional[int] = None, | |
res_type: str = "soxr_hq", | |
dtype: Optional[DTypeLike] = None, | |
) -> np.ndarray: | |
"""Compute the inverse constant-Q transform. | |
Given a constant-Q transform representation ``C`` of an audio signal ``y``, | |
this function produces an approximation ``y_hat``. | |
Parameters | |
---------- | |
C : np.ndarray, [shape=(..., n_bins, n_frames)] | |
Constant-Q representation as produced by `cqt` | |
sr : number > 0 [scalar] | |
sampling rate of the signal | |
hop_length : int > 0 [scalar] | |
number of samples between successive frames | |
fmin : float > 0 [scalar] | |
Minimum frequency. Defaults to `C1 ~= 32.70 Hz` | |
bins_per_octave : int > 0 [scalar] | |
Number of bins per octave | |
tuning : float [scalar] | |
Tuning offset in fractions of a bin. | |
The minimum frequency of the CQT will be modified to | |
``fmin * 2**(tuning / bins_per_octave)``. | |
filter_scale : float > 0 [scalar] | |
Filter scale factor. Small values (<1) use shorter windows | |
for improved time resolution. | |
norm : {inf, -inf, 0, float > 0} | |
Type of norm to use for basis function normalization. | |
See `librosa.util.normalize`. | |
sparsity : float in [0, 1) | |
Sparsify the CQT basis by discarding up to ``sparsity`` | |
fraction of the energy in each basis. | |
Set ``sparsity=0`` to disable sparsification. | |
window : str, tuple, number, or function | |
Window specification for the basis filters. | |
See `filters.get_window` for details. | |
scale : bool | |
If ``True``, scale the CQT response by square-root the length | |
of each channel's filter. This is analogous to ``norm='ortho'`` in FFT. | |
If ``False``, do not scale the CQT. This is analogous to ``norm=None`` | |
in FFT. | |
length : int > 0, optional | |
If provided, the output ``y`` is zero-padded or clipped to exactly | |
``length`` samples. | |
res_type : string | |
Resampling mode. | |
See `librosa.resample` for supported modes. | |
dtype : numeric type | |
Real numeric type for ``y``. Default is inferred to match the numerical | |
precision of the input CQT. | |
Returns | |
------- | |
y : np.ndarray, [shape=(..., n_samples), dtype=np.float] | |
Audio time-series reconstructed from the CQT representation. | |
See Also | |
-------- | |
cqt | |
librosa.resample | |
Notes | |
----- | |
This function caches at level 40. | |
Examples | |
-------- | |
Using default parameters | |
>>> y, sr = librosa.load(librosa.ex('trumpet')) | |
>>> C = librosa.cqt(y=y, sr=sr) | |
>>> y_hat = librosa.icqt(C=C, sr=sr) | |
Or with a different hop length and frequency resolution: | |
>>> hop_length = 256 | |
>>> bins_per_octave = 12 * 3 | |
>>> C = librosa.cqt(y=y, sr=sr, hop_length=256, n_bins=7*bins_per_octave, | |
... bins_per_octave=bins_per_octave) | |
>>> y_hat = librosa.icqt(C=C, sr=sr, hop_length=hop_length, | |
... bins_per_octave=bins_per_octave) | |
""" | |
if fmin is None: | |
fmin = note_to_hz("C1") | |
# Apply tuning correction | |
fmin = fmin * 2.0 ** (tuning / bins_per_octave) | |
# Get the top octave of frequencies | |
n_bins = C.shape[-2] | |
n_octaves = int(np.ceil(float(n_bins) / bins_per_octave)) | |
# truncate the cqt to max frames if helpful | |
freqs = cqt_frequencies(fmin=fmin, n_bins=n_bins, bins_per_octave=bins_per_octave) | |
alpha = __bpo_to_alpha(bins_per_octave) | |
lengths, f_cutoff = filters.wavelet_lengths( | |
freqs=freqs, sr=sr, window=window, filter_scale=filter_scale, alpha=alpha | |
) | |
# Trim the CQT to only what's necessary for reconstruction | |
if length is not None: | |
n_frames = int(np.ceil((length + max(lengths)) / hop_length)) | |
C = C[..., :n_frames] | |
C_scale = np.sqrt(lengths) | |
# This shape array will be used for broadcasting the basis scale | |
# we'll have to adapt this per octave within the loop | |
y: Optional[np.ndarray] = None | |
# Assume the top octave is at the full rate | |
srs = [sr] | |
hops = [hop_length] | |
for i in range(n_octaves - 1): | |
if hops[0] % 2 == 0: | |
# We can downsample: | |
srs.insert(0, srs[0] * 0.5) | |
hops.insert(0, hops[0] // 2) | |
else: | |
# We're out of downsamplings, carry forward | |
srs.insert(0, srs[0]) | |
hops.insert(0, hops[0]) | |
for i, (my_sr, my_hop) in enumerate(zip(srs, hops)): | |
# How many filters are in this octave? | |
n_filters = min(bins_per_octave, n_bins - bins_per_octave * i) | |
# Slice out the current octave | |
sl = slice(bins_per_octave * i, bins_per_octave * i + n_filters) | |
fft_basis, n_fft, _ = __vqt_filter_fft( | |
my_sr, | |
freqs[sl], | |
filter_scale, | |
norm, | |
sparsity, | |
window=window, | |
dtype=dtype, | |
alpha=alpha, | |
) | |
# Transpose the basis | |
inv_basis = fft_basis.H.todense() | |
# Compute each filter's frequency-domain power | |
freq_power = 1 / np.sum(util.abs2(np.asarray(inv_basis)), axis=0) | |
# Compensate for length normalization in the forward transform | |
freq_power *= n_fft / lengths[sl] | |
# Inverse-project the basis for each octave | |
if scale: | |
# scale=True ==> re-scale by sqrt(lengths) | |
D_oct = np.einsum( | |
"fc,c,c,...ct->...ft", | |
inv_basis, | |
C_scale[sl], | |
freq_power, | |
C[..., sl, :], | |
optimize=True, | |
) | |
else: | |
D_oct = np.einsum( | |
"fc,c,...ct->...ft", inv_basis, freq_power, C[..., sl, :], optimize=True | |
) | |
y_oct = istft(D_oct, window="ones", hop_length=my_hop, dtype=dtype) | |
y_oct = audio.resample( | |
y_oct, | |
orig_sr=1, | |
target_sr=sr // my_sr, | |
res_type=res_type, | |
scale=False, | |
fix=False, | |
) | |
if y is None: | |
y = y_oct | |
else: | |
y[..., : y_oct.shape[-1]] += y_oct | |
# make mypy happy | |
assert y is not None | |
if length: | |
y = util.fix_length(y, size=length) | |
return y | |
def vqt( | |
y: np.ndarray, | |
*, | |
sr: float = 22050, | |
hop_length: int = 512, | |
fmin: Optional[_FloatLike_co] = None, | |
n_bins: int = 84, | |
intervals: Union[str, Collection[float]] = "equal", | |
gamma: Optional[float] = None, | |
bins_per_octave: int = 12, | |
tuning: Optional[float] = 0.0, | |
filter_scale: float = 1, | |
norm: Optional[float] = 1, | |
sparsity: float = 0.01, | |
window: _WindowSpec = "hann", | |
scale: bool = True, | |
pad_mode: _PadMode = "constant", | |
res_type: Optional[str] = "soxr_hq", | |
dtype: Optional[DTypeLike] = None, | |
) -> np.ndarray: | |
"""Compute the variable-Q transform of an audio signal. | |
This implementation is based on the recursive sub-sampling method | |
described by [#]_. | |
.. [#] Schörkhuber, Christian, Anssi Klapuri, Nicki Holighaus, and Monika Dörfler. | |
"A Matlab toolbox for efficient perfect reconstruction time-frequency | |
transforms with log-frequency resolution." | |
In Audio Engineering Society Conference: 53rd International Conference: Semantic Audio. | |
Audio Engineering Society, 2014. | |
Parameters | |
---------- | |
y : np.ndarray [shape=(..., n)] | |
audio time series. Multi-channel is supported. | |
sr : number > 0 [scalar] | |
sampling rate of ``y`` | |
hop_length : int > 0 [scalar] | |
number of samples between successive VQT columns. | |
fmin : float > 0 [scalar] | |
Minimum frequency. Defaults to `C1 ~= 32.70 Hz` | |
n_bins : int > 0 [scalar] | |
Number of frequency bins, starting at ``fmin`` | |
intervals : str or array of floats in [1, 2) | |
Either a string specification for an interval set, e.g., | |
`'equal'`, `'pythagorean'`, `'ji3'`, etc. or an array of | |
intervals expressed as numbers between 1 and 2. | |
.. see also:: librosa.interval_frequencies | |
gamma : number > 0 [scalar] | |
Bandwidth offset for determining filter lengths. | |
If ``gamma=0``, produces the constant-Q transform. | |
If 'gamma=None', gamma will be calculated such that filter bandwidths are equal to a | |
constant fraction of the equivalent rectangular bandwidths (ERB). This is accomplished | |
by solving for the gamma which gives:: | |
B_k = alpha * f_k + gamma = C * ERB(f_k), | |
where ``B_k`` is the bandwidth of filter ``k`` with center frequency ``f_k``, alpha | |
is the inverse of what would be the constant Q-factor, and ``C = alpha / 0.108`` is the | |
constant fraction across all filters. | |
Here we use ``ERB(f_k) = 24.7 + 0.108 * f_k``, the best-fit curve derived | |
from experimental data in [#]_. | |
.. [#] Glasberg, Brian R., and Brian CJ Moore. | |
"Derivation of auditory filter shapes from notched-noise data." | |
Hearing research 47.1-2 (1990): 103-138. | |
bins_per_octave : int > 0 [scalar] | |
Number of bins per octave | |
tuning : None or float | |
Tuning offset in fractions of a bin. | |
If ``None``, tuning will be automatically estimated from the signal. | |
The minimum frequency of the resulting VQT will be modified to | |
``fmin * 2**(tuning / bins_per_octave)``. | |
filter_scale : float > 0 | |
Filter scale factor. Small values (<1) use shorter windows | |
for improved time resolution. | |
norm : {inf, -inf, 0, float > 0} | |
Type of norm to use for basis function normalization. | |
See `librosa.util.normalize`. | |
sparsity : float in [0, 1) | |
Sparsify the VQT basis by discarding up to ``sparsity`` | |
fraction of the energy in each basis. | |
Set ``sparsity=0`` to disable sparsification. | |
window : str, tuple, number, or function | |
Window specification for the basis filters. | |
See `filters.get_window` for details. | |
scale : bool | |
If ``True``, scale the VQT response by square-root the length of | |
each channel's filter. This is analogous to ``norm='ortho'`` in FFT. | |
If ``False``, do not scale the VQT. This is analogous to | |
``norm=None`` in FFT. | |
pad_mode : string | |
Padding mode for centered frame analysis. | |
See also: `librosa.stft` and `numpy.pad`. | |
res_type : string | |
The resampling mode for recursive downsampling. | |
dtype : np.dtype | |
The dtype of the output array. By default, this is inferred to match the | |
numerical precision of the input signal. | |
Returns | |
------- | |
VQT : np.ndarray [shape=(..., n_bins, t), dtype=np.complex] | |
Variable-Q value each frequency at each time. | |
See Also | |
-------- | |
cqt | |
Notes | |
----- | |
This function caches at level 20. | |
Examples | |
-------- | |
Generate and plot a variable-Q power spectrum | |
>>> import matplotlib.pyplot as plt | |
>>> y, sr = librosa.load(librosa.ex('choice'), duration=5) | |
>>> C = np.abs(librosa.cqt(y, sr=sr)) | |
>>> V = np.abs(librosa.vqt(y, sr=sr)) | |
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) | |
>>> librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max), | |
... sr=sr, x_axis='time', y_axis='cqt_note', ax=ax[0]) | |
>>> ax[0].set(title='Constant-Q power spectrum', xlabel=None) | |
>>> ax[0].label_outer() | |
>>> img = librosa.display.specshow(librosa.amplitude_to_db(V, ref=np.max), | |
... sr=sr, x_axis='time', y_axis='cqt_note', ax=ax[1]) | |
>>> ax[1].set_title('Variable-Q power spectrum') | |
>>> fig.colorbar(img, ax=ax, format="%+2.0f dB") | |
""" | |
# If intervals are provided as an array, override BPO | |
if not isinstance(intervals, str): | |
bins_per_octave = len(intervals) | |
# How many octaves are we dealing with? | |
n_octaves = int(np.ceil(float(n_bins) / bins_per_octave)) | |
n_filters = min(bins_per_octave, n_bins) | |
if fmin is None: | |
# C1 by default | |
fmin = note_to_hz("C1") | |
if tuning is None: | |
tuning = estimate_tuning(y=y, sr=sr, bins_per_octave=bins_per_octave) | |
if dtype is None: | |
dtype = util.dtype_r2c(y.dtype) | |
# Apply tuning correction | |
fmin = fmin * 2.0 ** (tuning / bins_per_octave) | |
# First thing, get the freqs of the top octave | |
freqs = interval_frequencies( | |
n_bins=n_bins, | |
fmin=fmin, | |
intervals=intervals, | |
bins_per_octave=bins_per_octave, | |
sort=True, | |
) | |
freqs_top = freqs[-bins_per_octave:] | |
fmax_t: float = np.max(freqs_top) | |
alpha = __bpo_to_alpha(bins_per_octave) | |
lengths, filter_cutoff = filters.wavelet_lengths( | |
freqs=freqs, | |
sr=sr, | |
window=window, | |
filter_scale=filter_scale, | |
gamma=gamma, | |
alpha=alpha, | |
) | |
# Determine required resampling quality | |
nyquist = sr / 2.0 | |
if filter_cutoff > nyquist: | |
raise ParameterError( | |
f"Wavelet basis with max frequency={fmax_t} would exceed the Nyquist frequency={nyquist}. " | |
"Try reducing the number of frequency bins." | |
) | |
if res_type is None: | |
warnings.warn( | |
"Support for VQT with res_type=None is deprecated in librosa 0.10\n" | |
"and will be removed in version 1.0.", | |
category=FutureWarning, | |
stacklevel=2, | |
) | |
res_type = "soxr_hq" | |
y, sr, hop_length = __early_downsample( | |
y, sr, hop_length, res_type, n_octaves, nyquist, filter_cutoff, scale | |
) | |
vqt_resp = [] | |
# Iterate down the octaves | |
my_y, my_sr, my_hop = y, sr, hop_length | |
for i in range(n_octaves): | |
# Slice out the current octave of filters | |
if i == 0: | |
sl = slice(-n_filters, None) | |
else: | |
sl = slice(-n_filters * (i + 1), -n_filters * i) | |
# This may be incorrect with early downsampling | |
freqs_oct = freqs[sl] | |
fft_basis, n_fft, _ = __vqt_filter_fft( | |
my_sr, | |
freqs_oct, | |
filter_scale, | |
norm, | |
sparsity, | |
window=window, | |
gamma=gamma, | |
dtype=dtype, | |
alpha=alpha, | |
) | |
# Re-scale the filters to compensate for downsampling | |
fft_basis[:] *= np.sqrt(sr / my_sr) | |
# Compute the vqt filter response and append to the stack | |
vqt_resp.append( | |
__cqt_response(my_y, n_fft, my_hop, fft_basis, pad_mode, dtype=dtype) | |
) | |
if my_hop % 2 == 0: | |
my_hop //= 2 | |
my_sr /= 2.0 | |
my_y = audio.resample( | |
my_y, orig_sr=2, target_sr=1, res_type=res_type, scale=True | |
) | |
V = __trim_stack(vqt_resp, n_bins, dtype) | |
if scale: | |
# Recompute lengths here because early downsampling may have changed | |
# our sampling rate | |
lengths, _ = filters.wavelet_lengths( | |
freqs=freqs, | |
sr=sr, | |
window=window, | |
filter_scale=filter_scale, | |
gamma=gamma, | |
alpha=alpha, | |
) | |
# reshape lengths to match V shape | |
lengths = util.expand_to(lengths, ndim=V.ndim, axes=-2) | |
V /= np.sqrt(lengths) | |
return V | |
def __vqt_filter_fft( | |
sr, | |
freqs, | |
filter_scale, | |
norm, | |
sparsity, | |
hop_length=None, | |
window="hann", | |
gamma=0.0, | |
dtype=np.complex64, | |
alpha=None, | |
): | |
"""Generate the frequency domain variable-Q filter basis.""" | |
basis, lengths = filters.wavelet( | |
freqs=freqs, | |
sr=sr, | |
filter_scale=filter_scale, | |
norm=norm, | |
pad_fft=True, | |
window=window, | |
gamma=gamma, | |
alpha=alpha, | |
) | |
# Filters are padded up to the nearest integral power of 2 | |
n_fft = basis.shape[1] | |
if hop_length is not None and n_fft < 2.0 ** (1 + np.ceil(np.log2(hop_length))): | |
n_fft = int(2.0 ** (1 + np.ceil(np.log2(hop_length)))) | |
# re-normalize bases with respect to the FFT window length | |
basis *= lengths[:, np.newaxis] / float(n_fft) | |
# FFT and retain only the non-negative frequencies | |
fft = get_fftlib() | |
fft_basis = fft.fft(basis, n=n_fft, axis=1)[:, : (n_fft // 2) + 1] | |
# sparsify the basis | |
fft_basis = util.sparsify_rows(fft_basis, quantile=sparsity, dtype=dtype) | |
return fft_basis, n_fft, lengths | |
def __trim_stack( | |
cqt_resp: List[np.ndarray], n_bins: int, dtype: DTypeLike | |
) -> np.ndarray: | |
"""Helper function to trim and stack a collection of CQT responses""" | |
max_col = min(c_i.shape[-1] for c_i in cqt_resp) | |
# Grab any leading dimensions | |
shape = list(cqt_resp[0].shape) | |
shape[-2] = n_bins | |
shape[-1] = max_col | |
cqt_out = np.empty(shape, dtype=dtype, order="F") | |
# Copy per-octave data into output array | |
end = n_bins | |
for c_i in cqt_resp: | |
# By default, take the whole octave | |
n_oct = c_i.shape[-2] | |
# If the whole octave is more than we can fit, | |
# take the highest bins from c_i | |
if end < n_oct: | |
cqt_out[..., :end, :] = c_i[..., -end:, :max_col] | |
else: | |
cqt_out[..., end - n_oct : end, :] = c_i[..., :max_col] | |
end -= n_oct | |
return cqt_out | |
def __cqt_response( | |
y, n_fft, hop_length, fft_basis, mode, window="ones", phase=True, dtype=None | |
): | |
"""Compute the filter response with a target STFT hop.""" | |
# Compute the STFT matrix | |
D = stft( | |
y, n_fft=n_fft, hop_length=hop_length, window=window, pad_mode=mode, dtype=dtype | |
) | |
if not phase: | |
D = np.abs(D) | |
# Reshape D to Dr | |
Dr = D.reshape((-1, D.shape[-2], D.shape[-1])) | |
output_flat = np.empty( | |
(Dr.shape[0], fft_basis.shape[0], Dr.shape[-1]), dtype=D.dtype | |
) | |
# iterate over channels | |
# project fft_basis.dot(Dr[i]) | |
for i in range(Dr.shape[0]): | |
output_flat[i] = fft_basis.dot(Dr[i]) | |
# reshape Dr to match D's leading dimensions again | |
shape = list(D.shape) | |
shape[-2] = fft_basis.shape[0] | |
return output_flat.reshape(shape) | |
def __early_downsample_count(nyquist, filter_cutoff, hop_length, n_octaves): | |
"""Compute the number of early downsampling operations""" | |
downsample_count1 = max(0, int(np.ceil(np.log2(nyquist / filter_cutoff)) - 1) - 1) | |
num_twos = __num_two_factors(hop_length) | |
downsample_count2 = max(0, num_twos - n_octaves + 1) | |
return min(downsample_count1, downsample_count2) | |
def __early_downsample( | |
y, sr, hop_length, res_type, n_octaves, nyquist, filter_cutoff, scale | |
): | |
"""Perform early downsampling on an audio signal, if it applies.""" | |
downsample_count = __early_downsample_count( | |
nyquist, filter_cutoff, hop_length, n_octaves | |
) | |
if downsample_count > 0: | |
downsample_factor = 2 ** (downsample_count) | |
hop_length //= downsample_factor | |
if y.shape[-1] < downsample_factor: | |
raise ParameterError( | |
f"Input signal length={len(y):d} is too short for " | |
f"{n_octaves:d}-octave CQT" | |
) | |
new_sr = sr / float(downsample_factor) | |
y = audio.resample( | |
y, orig_sr=downsample_factor, target_sr=1, res_type=res_type, scale=True | |
) | |
# If we're not going to length-scale after CQT, we | |
# need to compensate for the downsampling factor here | |
if not scale: | |
y *= np.sqrt(downsample_factor) | |
sr = new_sr | |
return y, sr, hop_length | |
def __num_two_factors(x): | |
"""Return how many times integer x can be evenly divided by 2. | |
Returns 0 for non-positive integers. | |
""" | |
if x <= 0: | |
return 0 | |
num_twos = 0 | |
while x % 2 == 0: | |
num_twos += 1 | |
x //= 2 | |
return num_twos | |
def griffinlim_cqt( | |
C: np.ndarray, | |
*, | |
n_iter: int = 32, | |
sr: float = 22050, | |
hop_length: int = 512, | |
fmin: Optional[_FloatLike_co] = None, | |
bins_per_octave: int = 12, | |
tuning: float = 0.0, | |
filter_scale: float = 1, | |
norm: Optional[float] = 1, | |
sparsity: float = 0.01, | |
window: _WindowSpec = "hann", | |
scale: bool = True, | |
pad_mode: _PadMode = "constant", | |
res_type: str = "soxr_hq", | |
dtype: Optional[DTypeLike] = None, | |
length: Optional[int] = None, | |
momentum: float = 0.99, | |
init: Optional[str] = "random", | |
random_state: Optional[ | |
Union[int, np.random.RandomState, np.random.Generator] | |
] = None, | |
) -> np.ndarray: | |
"""Approximate constant-Q magnitude spectrogram inversion using the "fast" Griffin-Lim | |
algorithm. | |
Given the magnitude of a constant-Q spectrogram (``C``), the algorithm randomly initializes | |
phase estimates, and then alternates forward- and inverse-CQT operations. [#]_ | |
This implementation is based on the (fast) Griffin-Lim method for Short-time Fourier Transforms, [#]_ | |
but adapted for use with constant-Q spectrograms. | |
.. [#] D. W. Griffin and J. S. Lim, | |
"Signal estimation from modified short-time Fourier transform," | |
IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. | |
.. [#] Perraudin, N., Balazs, P., & Søndergaard, P. L. | |
"A fast Griffin-Lim algorithm," | |
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4), | |
Oct. 2013. | |
Parameters | |
---------- | |
C : np.ndarray [shape=(..., n_bins, n_frames)] | |
The constant-Q magnitude spectrogram | |
n_iter : int > 0 | |
The number of iterations to run | |
sr : number > 0 | |
Audio sampling rate | |
hop_length : int > 0 | |
The hop length of the CQT | |
fmin : number > 0 | |
Minimum frequency for the CQT. | |
If not provided, it defaults to `C1`. | |
bins_per_octave : int > 0 | |
Number of bins per octave | |
tuning : float | |
Tuning deviation from A440, in fractions of a bin | |
filter_scale : float > 0 | |
Filter scale factor. Small values (<1) use shorter windows | |
for improved time resolution. | |
norm : {inf, -inf, 0, float > 0} | |
Type of norm to use for basis function normalization. | |
See `librosa.util.normalize`. | |
sparsity : float in [0, 1) | |
Sparsify the CQT basis by discarding up to ``sparsity`` | |
fraction of the energy in each basis. | |
Set ``sparsity=0`` to disable sparsification. | |
window : str, tuple, or function | |
Window specification for the basis filters. | |
See `filters.get_window` for details. | |
scale : bool | |
If ``True``, scale the CQT response by square-root the length | |
of each channel's filter. This is analogous to ``norm='ortho'`` | |
in FFT. | |
If ``False``, do not scale the CQT. This is analogous to ``norm=None`` | |
in FFT. | |
pad_mode : string | |
Padding mode for centered frame analysis. | |
See also: `librosa.stft` and `numpy.pad`. | |
res_type : string | |
The resampling mode for recursive downsampling. | |
See ``librosa.resample`` for a list of available options. | |
dtype : numeric type | |
Real numeric type for ``y``. Default is inferred to match the precision | |
of the input CQT. | |
length : int > 0, optional | |
If provided, the output ``y`` is zero-padded or clipped to exactly | |
``length`` samples. | |
momentum : float > 0 | |
The momentum parameter for fast Griffin-Lim. | |
Setting this to 0 recovers the original Griffin-Lim method. | |
Values near 1 can lead to faster convergence, but above 1 may not converge. | |
init : None or 'random' [default] | |
If 'random' (the default), then phase values are initialized randomly | |
according to ``random_state``. This is recommended when the input ``C`` is | |
a magnitude spectrogram with no initial phase estimates. | |
If ``None``, then the phase is initialized from ``C``. This is useful when | |
an initial guess for phase can be provided, or when you want to resume | |
Griffin-Lim from a previous output. | |
random_state : None, int, np.random.RandomState, or np.random.Generator | |
If int, random_state is the seed used by the random number generator | |
for phase initialization. | |
If `np.random.RandomState` or `np.random.Generator` instance, the random number generator itself. | |
If ``None``, defaults to the `np.random.default_rng()` object. | |
Returns | |
------- | |
y : np.ndarray [shape=(..., n)] | |
time-domain signal reconstructed from ``C`` | |
See Also | |
-------- | |
cqt | |
icqt | |
griffinlim | |
filters.get_window | |
resample | |
Examples | |
-------- | |
A basis CQT inverse example | |
>>> y, sr = librosa.load(librosa.ex('trumpet', hq=True), sr=None) | |
>>> # Get the CQT magnitude, 7 octaves at 36 bins per octave | |
>>> C = np.abs(librosa.cqt(y=y, sr=sr, bins_per_octave=36, n_bins=7*36)) | |
>>> # Invert using Griffin-Lim | |
>>> y_inv = librosa.griffinlim_cqt(C, sr=sr, bins_per_octave=36) | |
>>> # And invert without estimating phase | |
>>> y_icqt = librosa.icqt(C, sr=sr, bins_per_octave=36) | |
Wave-plot the results | |
>>> import matplotlib.pyplot as plt | |
>>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True) | |
>>> librosa.display.waveshow(y, sr=sr, color='b', ax=ax[0]) | |
>>> ax[0].set(title='Original', xlabel=None) | |
>>> ax[0].label_outer() | |
>>> librosa.display.waveshow(y_inv, sr=sr, color='g', ax=ax[1]) | |
>>> ax[1].set(title='Griffin-Lim reconstruction', xlabel=None) | |
>>> ax[1].label_outer() | |
>>> librosa.display.waveshow(y_icqt, sr=sr, color='r', ax=ax[2]) | |
>>> ax[2].set(title='Magnitude-only icqt reconstruction') | |
""" | |
if fmin is None: | |
fmin = note_to_hz("C1") | |
if random_state is None: | |
rng = np.random.default_rng() | |
elif isinstance(random_state, int): | |
rng = np.random.RandomState(seed=random_state) # type: ignore | |
elif isinstance(random_state, (np.random.RandomState, np.random.Generator)): | |
rng = random_state # type: ignore | |
else: | |
_ensure_not_reachable(random_state) | |
raise ParameterError(f"Unsupported random_state={random_state!r}") | |
if momentum > 1: | |
warnings.warn( | |
f"Griffin-Lim with momentum={momentum} > 1 can be unstable. " | |
"Proceed with caution!", | |
stacklevel=2, | |
) | |
elif momentum < 0: | |
raise ParameterError(f"griffinlim_cqt() called with momentum={momentum} < 0") | |
# using complex64 will keep the result to minimal necessary precision | |
angles = np.empty(C.shape, dtype=np.complex64) | |
eps = util.tiny(angles) | |
if init == "random": | |
# randomly initialize the phase | |
angles[:] = util.phasor(2 * np.pi * rng.random(size=C.shape)) | |
elif init is None: | |
# Initialize an all ones complex matrix | |
angles[:] = 1.0 | |
else: | |
raise ParameterError(f"init={init} must either None or 'random'") | |
# And initialize the previous iterate to 0 | |
rebuilt: np.ndarray = np.array(0.0) | |
for _ in range(n_iter): | |
# Store the previous iterate | |
tprev = rebuilt | |
# Invert with our current estimate of the phases | |
inverse = icqt( | |
C * angles, | |
sr=sr, | |
hop_length=hop_length, | |
bins_per_octave=bins_per_octave, | |
fmin=fmin, | |
tuning=tuning, | |
filter_scale=filter_scale, | |
window=window, | |
length=length, | |
res_type=res_type, | |
norm=norm, | |
scale=scale, | |
sparsity=sparsity, | |
dtype=dtype, | |
) | |
# Rebuild the spectrogram | |
rebuilt = cqt( | |
inverse, | |
sr=sr, | |
bins_per_octave=bins_per_octave, | |
n_bins=C.shape[-2], | |
hop_length=hop_length, | |
fmin=fmin, | |
tuning=tuning, | |
filter_scale=filter_scale, | |
window=window, | |
norm=norm, | |
scale=scale, | |
sparsity=sparsity, | |
pad_mode=pad_mode, | |
res_type=res_type, | |
) | |
# Update our phase estimates | |
angles[:] = rebuilt - (momentum / (1 + momentum)) * tprev | |
angles[:] /= np.abs(angles) + eps | |
# Return the final phase estimates | |
return icqt( | |
C * angles, | |
sr=sr, | |
hop_length=hop_length, | |
bins_per_octave=bins_per_octave, | |
tuning=tuning, | |
filter_scale=filter_scale, | |
fmin=fmin, | |
window=window, | |
length=length, | |
res_type=res_type, | |
norm=norm, | |
scale=scale, | |
sparsity=sparsity, | |
dtype=dtype, | |
) | |
def __bpo_to_alpha(bins_per_octave: int) -> float: | |
"""Compute the alpha coefficient for a given number of bins per octave | |
Parameters | |
---------- | |
bins_per_octave : int | |
Returns | |
------- | |
alpha : number > 0 | |
""" | |
r = 2 ** (1 / bins_per_octave) | |
return (r**2 - 1) / (r**2 + 1) | |