Spaces:
Configuration error
Configuration error
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
"""Matching functions""" | |
import numpy as np | |
import numba | |
from .exceptions import ParameterError | |
from .utils import valid_intervals | |
from .._typing import _SequenceLike | |
__all__ = ["match_intervals", "match_events"] | |
# type: ignore | |
def __jaccard(int_a: np.ndarray, int_b: np.ndarray): # pragma: no cover | |
"""Jaccard similarity between two intervals | |
Parameters | |
---------- | |
int_a, int_b : np.ndarrays, shape=(2,) | |
Returns | |
------- | |
Jaccard similarity between intervals | |
""" | |
ends = [int_a[1], int_b[1]] | |
if ends[1] < ends[0]: | |
ends.reverse() | |
starts = [int_a[0], int_b[0]] | |
if starts[1] < starts[0]: | |
starts.reverse() | |
intersection = ends[0] - starts[1] | |
if intersection < 0: | |
intersection = 0.0 | |
union = ends[1] - starts[0] | |
if union > 0: | |
return intersection / union | |
return 0.0 | |
def __match_interval_overlaps(query, intervals_to, candidates): # pragma: no cover | |
"""Find the best Jaccard match from query to candidates""" | |
best_score = -1 | |
best_idx = -1 | |
for idx in candidates: | |
score = __jaccard(query, intervals_to[idx]) | |
if score > best_score: | |
best_score, best_idx = score, idx | |
return best_idx | |
# type: ignore | |
def __match_intervals( | |
intervals_from: np.ndarray, intervals_to: np.ndarray, strict: bool = True | |
) -> np.ndarray: # pragma: no cover | |
"""Numba-accelerated interval matching algorithm.""" | |
# sort index of the interval starts | |
start_index = np.argsort(intervals_to[:, 0]) | |
# sort index of the interval ends | |
end_index = np.argsort(intervals_to[:, 1]) | |
# and sorted values of starts | |
start_sorted = intervals_to[start_index, 0] | |
# and ends | |
end_sorted = intervals_to[end_index, 1] | |
search_ends = np.searchsorted(start_sorted, intervals_from[:, 1], side="right") | |
search_starts = np.searchsorted(end_sorted, intervals_from[:, 0], side="left") | |
output = np.empty(len(intervals_from), dtype=numba.uint32) | |
for i in range(len(intervals_from)): | |
query = intervals_from[i] | |
# Find the intervals that start after our query ends | |
after_query = search_ends[i] | |
# And the intervals that end after our query begins | |
before_query = search_starts[i] | |
# Candidates for overlapping have to (end after we start) and (begin before we end) | |
candidates = set(start_index[:after_query]) & set(end_index[before_query:]) | |
# Proceed as before | |
if len(candidates) > 0: | |
output[i] = __match_interval_overlaps(query, intervals_to, candidates) | |
elif strict: | |
# Numba only lets us use compile-time constants in exception messages | |
raise ParameterError | |
else: | |
# Find the closest interval | |
# (start_index[after_query] - query[1]) is the distance to the next interval | |
# (query[0] - end_index[before_query]) | |
dist_before = np.inf | |
dist_after = np.inf | |
if search_starts[i] > 0: | |
dist_before = query[0] - end_sorted[search_starts[i] - 1] | |
if search_ends[i] + 1 < len(intervals_to): | |
dist_after = start_sorted[search_ends[i] + 1] - query[1] | |
if dist_before < dist_after: | |
output[i] = end_index[search_starts[i] - 1] | |
else: | |
output[i] = start_index[search_ends[i] + 1] | |
return output | |
def match_intervals( | |
intervals_from: np.ndarray, intervals_to: np.ndarray, strict: bool = True | |
) -> np.ndarray: | |
"""Match one set of time intervals to another. | |
This can be useful for tasks such as mapping beat timings | |
to segments. | |
Each element ``[a, b]`` of ``intervals_from`` is matched to the | |
element ``[c, d]`` of ``intervals_to`` which maximizes the | |
Jaccard similarity between the intervals:: | |
max(0, |min(b, d) - max(a, c)|) / |max(d, b) - min(a, c)| | |
In ``strict=True`` mode, if there is no interval with positive | |
intersection with ``[a,b]``, an exception is thrown. | |
In ``strict=False`` mode, any interval ``[a, b]`` that has no | |
intersection with any element of ``intervals_to`` is instead | |
matched to the interval ``[c, d]`` which minimizes:: | |
min(|b - c|, |a - d|) | |
that is, the disjoint interval [c, d] with a boundary closest | |
to [a, b]. | |
.. note:: An element of ``intervals_to`` may be matched to multiple | |
entries of ``intervals_from``. | |
Parameters | |
---------- | |
intervals_from : np.ndarray [shape=(n, 2)] | |
The time range for source intervals. | |
The ``i`` th interval spans time ``intervals_from[i, 0]`` | |
to ``intervals_from[i, 1]``. | |
``intervals_from[0, 0]`` should be 0, ``intervals_from[-1, 1]`` | |
should be the track duration. | |
intervals_to : np.ndarray [shape=(m, 2)] | |
Analogous to ``intervals_from``. | |
strict : bool | |
If ``True``, intervals can only match if they intersect. | |
If ``False``, disjoint intervals can match. | |
Returns | |
------- | |
interval_mapping : np.ndarray [shape=(n,)] | |
For each interval in ``intervals_from``, the | |
corresponding interval in ``intervals_to``. | |
See Also | |
-------- | |
match_events | |
Raises | |
------ | |
ParameterError | |
If either array of input intervals is not the correct shape | |
If ``strict=True`` and some element of ``intervals_from`` is disjoint from | |
every element of ``intervals_to``. | |
Examples | |
-------- | |
>>> ints_from = np.array([[3, 5], [1, 4], [4, 5]]) | |
>>> ints_to = np.array([[0, 2], [1, 3], [4, 5], [6, 7]]) | |
>>> librosa.util.match_intervals(ints_from, ints_to) | |
array([2, 1, 2], dtype=uint32) | |
>>> # [3, 5] => [4, 5] (ints_to[2]) | |
>>> # [1, 4] => [1, 3] (ints_to[1]) | |
>>> # [4, 5] => [4, 5] (ints_to[2]) | |
The reverse matching of the above is not possible in ``strict`` mode | |
because ``[6, 7]`` is disjoint from all intervals in ``ints_from``. | |
With ``strict=False``, we get the following: | |
>>> librosa.util.match_intervals(ints_to, ints_from, strict=False) | |
array([1, 1, 2, 2], dtype=uint32) | |
>>> # [0, 2] => [1, 4] (ints_from[1]) | |
>>> # [1, 3] => [1, 4] (ints_from[1]) | |
>>> # [4, 5] => [4, 5] (ints_from[2]) | |
>>> # [6, 7] => [4, 5] (ints_from[2]) | |
""" | |
if len(intervals_from) == 0 or len(intervals_to) == 0: | |
raise ParameterError("Attempting to match empty interval list") | |
# Verify that the input intervals has correct shape and size | |
valid_intervals(intervals_from) | |
valid_intervals(intervals_to) | |
try: | |
# Suppress type check because of numba wrapper | |
return __match_intervals(intervals_from, intervals_to, strict=strict) # type: ignore | |
except ParameterError as exc: | |
raise ParameterError(f"Unable to match intervals with strict={strict}") from exc | |
def match_events( | |
events_from: _SequenceLike, | |
events_to: _SequenceLike, | |
left: bool = True, | |
right: bool = True, | |
) -> np.ndarray: | |
"""Match one set of events to another. | |
This is useful for tasks such as matching beats to the nearest | |
detected onsets, or frame-aligned events to the nearest zero-crossing. | |
.. note:: A target event may be matched to multiple source events. | |
Examples | |
-------- | |
>>> # Sources are multiples of 7 | |
>>> s_from = np.arange(0, 100, 7) | |
>>> s_from | |
array([ 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, | |
98]) | |
>>> # Targets are multiples of 10 | |
>>> s_to = np.arange(0, 100, 10) | |
>>> s_to | |
array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90]) | |
>>> # Find the matching | |
>>> idx = librosa.util.match_events(s_from, s_to) | |
>>> idx | |
array([0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9]) | |
>>> # Print each source value to its matching target | |
>>> zip(s_from, s_to[idx]) | |
[(0, 0), (7, 10), (14, 10), (21, 20), (28, 30), (35, 30), | |
(42, 40), (49, 50), (56, 60), (63, 60), (70, 70), (77, 80), | |
(84, 80), (91, 90), (98, 90)] | |
Parameters | |
---------- | |
events_from : ndarray [shape=(n,)] | |
Array of events (eg, times, sample or frame indices) to match from. | |
events_to : ndarray [shape=(m,)] | |
Array of events (eg, times, sample or frame indices) to | |
match against. | |
left : bool | |
right : bool | |
If ``False``, then matched events cannot be to the left (or right) | |
of source events. | |
Returns | |
------- | |
event_mapping : np.ndarray [shape=(n,)] | |
For each event in ``events_from``, the corresponding event | |
index in ``events_to``:: | |
event_mapping[i] == arg min |events_from[i] - events_to[:]| | |
See Also | |
-------- | |
match_intervals | |
Raises | |
------ | |
ParameterError | |
If either array of input events is not the correct shape | |
""" | |
if len(events_from) == 0 or len(events_to) == 0: | |
raise ParameterError("Attempting to match empty event list") | |
# If we can't match left or right, then only strict equivalence | |
# counts as a match. | |
if not (left or right) and not np.all(np.in1d(events_from, events_to)): | |
raise ParameterError( | |
"Cannot match events with left=right=False " | |
"and events_from is not contained " | |
"in events_to" | |
) | |
# If we can't match to the left, then there should be at least one | |
# target event greater-equal to every source event | |
if (not left) and max(events_to) < max(events_from): | |
raise ParameterError( | |
"Cannot match events with left=False " | |
"and max(events_to) < max(events_from)" | |
) | |
# If we can't match to the right, then there should be at least one | |
# target event less-equal to every source event | |
if (not right) and min(events_to) > min(events_from): | |
raise ParameterError( | |
"Cannot match events with right=False " | |
"and min(events_to) > min(events_from)" | |
) | |
# array of matched items | |
output = np.empty_like(events_from, dtype=np.int32) | |
# Suppress type check because of numba | |
return __match_events_helper(output, events_from, events_to, left, right) # type: ignore | |
# type: ignore | |
def __match_events_helper( | |
output: np.ndarray, | |
events_from: np.ndarray, | |
events_to: np.ndarray, | |
left: bool = True, | |
right: bool = True, | |
): # pragma: no cover | |
# mock dictionary for events | |
from_idx = np.argsort(events_from) | |
sorted_from = events_from[from_idx] | |
to_idx = np.argsort(events_to) | |
sorted_to = events_to[to_idx] | |
# find the matching indices | |
matching_indices = np.searchsorted(sorted_to, sorted_from) | |
# iterate over indices in matching_indices | |
for ind, middle_ind in enumerate(matching_indices): | |
left_flag = False | |
right_flag = False | |
left_ind = -1 | |
right_ind = len(matching_indices) | |
left_diff = 0 | |
right_diff = 0 | |
mid_diff = 0 | |
middle_ind = matching_indices[ind] | |
sorted_from_num = sorted_from[ind] | |
# Prevent oob from chosen index | |
if middle_ind == len(sorted_to): | |
middle_ind -= 1 | |
# Permitted to look to the left | |
if left and middle_ind > 0: | |
left_ind = middle_ind - 1 | |
left_flag = True | |
# Permitted to look to right | |
if right and middle_ind < len(sorted_to) - 1: | |
right_ind = middle_ind + 1 | |
right_flag = True | |
mid_diff = abs(sorted_to[middle_ind] - sorted_from_num) | |
if left and left_flag: | |
left_diff = abs(sorted_to[left_ind] - sorted_from_num) | |
if right and right_flag: | |
right_diff = abs(sorted_to[right_ind] - sorted_from_num) | |
if left_flag and ( | |
not right | |
and (sorted_to[middle_ind] > sorted_from_num) | |
or (not right_flag and left_diff < mid_diff) | |
or (left_diff < right_diff and left_diff < mid_diff) | |
): | |
output[ind] = to_idx[left_ind] | |
# Check if right should be chosen | |
elif right_flag and (right_diff < mid_diff): | |
output[ind] = to_idx[right_ind] | |
# Selected index wins | |
else: | |
output[ind] = to_idx[middle_ind] | |
# Undo sorting | |
solutions = np.empty_like(output) | |
solutions[from_idx] = output | |
return solutions | |