Spaces:
Configuration error
Configuration error
update the environment
Browse files- Dockerfile +1 -0
- audio.py +1799 -0
Dockerfile
CHANGED
@@ -25,6 +25,7 @@ COPY . /app/
|
|
25 |
|
26 |
# Replace the librosa notation.py with notation.py from your project
|
27 |
COPY notation.py /usr/local/lib/python3.10/site-packages/librosa/core/notation.py
|
|
|
28 |
|
29 |
# RUN cd /tmp && mkdir cache1
|
30 |
|
|
|
25 |
|
26 |
# Replace the librosa notation.py with notation.py from your project
|
27 |
COPY notation.py /usr/local/lib/python3.10/site-packages/librosa/core/notation.py
|
28 |
+
COPY audio.py /usr/local/lib/python3.10/site-packages/librosa/core/audio.py
|
29 |
|
30 |
# RUN cd /tmp && mkdir cache1
|
31 |
|
audio.py
ADDED
@@ -0,0 +1,1799 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""Core IO, DSP and utility functions."""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import os
|
7 |
+
import pathlib
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
import soundfile as sf
|
11 |
+
import audioread
|
12 |
+
import numpy as np
|
13 |
+
import scipy.signal
|
14 |
+
import soxr
|
15 |
+
import lazy_loader as lazy
|
16 |
+
|
17 |
+
from numba import jit, stencil, guvectorize
|
18 |
+
from .fft import get_fftlib
|
19 |
+
from .convert import frames_to_samples, time_to_samples
|
20 |
+
from .._cache import cache
|
21 |
+
from .. import util
|
22 |
+
from ..util.exceptions import ParameterError
|
23 |
+
from ..util.decorators import deprecated
|
24 |
+
from ..util.deprecation import Deprecated, rename_kw
|
25 |
+
from .._typing import _FloatLike_co, _IntLike_co, _SequenceLike
|
26 |
+
|
27 |
+
from typing import Any, BinaryIO, Callable, Generator, Optional, Tuple, Union, List
|
28 |
+
from numpy.typing import DTypeLike, ArrayLike
|
29 |
+
|
30 |
+
# Lazy-load optional dependencies
|
31 |
+
samplerate = lazy.load("samplerate")
|
32 |
+
resampy = lazy.load("resampy")
|
33 |
+
|
34 |
+
__all__ = [
|
35 |
+
"load",
|
36 |
+
"stream",
|
37 |
+
"to_mono",
|
38 |
+
"resample",
|
39 |
+
"get_duration",
|
40 |
+
"get_samplerate",
|
41 |
+
"autocorrelate",
|
42 |
+
"lpc",
|
43 |
+
"zero_crossings",
|
44 |
+
"clicks",
|
45 |
+
"tone",
|
46 |
+
"chirp",
|
47 |
+
"mu_compress",
|
48 |
+
"mu_expand",
|
49 |
+
]
|
50 |
+
|
51 |
+
|
52 |
+
# -- CORE ROUTINES --#
|
53 |
+
# Load should never be cached, since we cannot verify that the contents of
|
54 |
+
# 'path' are unchanged across calls.
|
55 |
+
def load(
|
56 |
+
path: Union[
|
57 |
+
str, int, os.PathLike[Any], sf.SoundFile, audioread.AudioFile, BinaryIO
|
58 |
+
],
|
59 |
+
*,
|
60 |
+
sr: Optional[float] = 22050,
|
61 |
+
mono: bool = True,
|
62 |
+
offset: float = 0.0,
|
63 |
+
duration: Optional[float] = None,
|
64 |
+
dtype: DTypeLike = np.float32,
|
65 |
+
res_type: str = "soxr_hq",
|
66 |
+
) -> Tuple[np.ndarray, float]:
|
67 |
+
"""Load an audio file as a floating point time series.
|
68 |
+
|
69 |
+
Audio will be automatically resampled to the given rate
|
70 |
+
(default ``sr=22050``).
|
71 |
+
|
72 |
+
To preserve the native sampling rate of the file, use ``sr=None``.
|
73 |
+
|
74 |
+
Parameters
|
75 |
+
----------
|
76 |
+
path : string, int, pathlib.Path, soundfile.SoundFile, audioread object, or file-like object
|
77 |
+
path to the input file.
|
78 |
+
|
79 |
+
Any codec supported by `soundfile` or `audioread` will work.
|
80 |
+
|
81 |
+
Any string file paths, or any object implementing Python's
|
82 |
+
file interface (e.g. `pathlib.Path`) are supported as `path`.
|
83 |
+
|
84 |
+
If the codec is supported by `soundfile`, then `path` can also be
|
85 |
+
an open file descriptor (int) or an existing `soundfile.SoundFile` object.
|
86 |
+
|
87 |
+
Pre-constructed audioread decoders are also supported here, see the example
|
88 |
+
below. This can be used, for example, to force a specific decoder rather
|
89 |
+
than relying upon audioread to select one for you.
|
90 |
+
|
91 |
+
.. warning:: audioread support is deprecated as of version 0.10.0.
|
92 |
+
audioread support be removed in version 1.0.
|
93 |
+
|
94 |
+
sr : number > 0 [scalar]
|
95 |
+
target sampling rate
|
96 |
+
|
97 |
+
'None' uses the native sampling rate
|
98 |
+
|
99 |
+
mono : bool
|
100 |
+
convert signal to mono
|
101 |
+
|
102 |
+
offset : float
|
103 |
+
start reading after this time (in seconds)
|
104 |
+
|
105 |
+
duration : float
|
106 |
+
only load up to this much audio (in seconds)
|
107 |
+
|
108 |
+
dtype : numeric type
|
109 |
+
data type of ``y``
|
110 |
+
|
111 |
+
res_type : str
|
112 |
+
resample type (see note)
|
113 |
+
|
114 |
+
.. note::
|
115 |
+
By default, this uses `soxr`'s high-quality mode ('HQ').
|
116 |
+
|
117 |
+
For alternative resampling modes, see `resample`
|
118 |
+
|
119 |
+
.. note::
|
120 |
+
`audioread` may truncate the precision of the audio data to 16 bits.
|
121 |
+
|
122 |
+
See :ref:`ioformats` for alternate loading methods.
|
123 |
+
|
124 |
+
Returns
|
125 |
+
-------
|
126 |
+
y : np.ndarray [shape=(n,) or (..., n)]
|
127 |
+
audio time series. Multi-channel is supported.
|
128 |
+
sr : number > 0 [scalar]
|
129 |
+
sampling rate of ``y``
|
130 |
+
|
131 |
+
Examples
|
132 |
+
--------
|
133 |
+
>>> # Load an ogg vorbis file
|
134 |
+
>>> filename = librosa.ex('trumpet')
|
135 |
+
>>> y, sr = librosa.load(filename)
|
136 |
+
>>> y
|
137 |
+
array([-1.407e-03, -4.461e-04, ..., -3.042e-05, 1.277e-05],
|
138 |
+
dtype=float32)
|
139 |
+
>>> sr
|
140 |
+
22050
|
141 |
+
|
142 |
+
>>> # Load a file and resample to 11 KHz
|
143 |
+
>>> filename = librosa.ex('trumpet')
|
144 |
+
>>> y, sr = librosa.load(filename, sr=11025)
|
145 |
+
>>> y
|
146 |
+
array([-8.746e-04, -3.363e-04, ..., -1.301e-05, 0.000e+00],
|
147 |
+
dtype=float32)
|
148 |
+
>>> sr
|
149 |
+
11025
|
150 |
+
|
151 |
+
>>> # Load 5 seconds of a file, starting 15 seconds in
|
152 |
+
>>> filename = librosa.ex('brahms')
|
153 |
+
>>> y, sr = librosa.load(filename, offset=15.0, duration=5.0)
|
154 |
+
>>> y
|
155 |
+
array([0.146, 0.144, ..., 0.128, 0.015], dtype=float32)
|
156 |
+
>>> sr
|
157 |
+
22050
|
158 |
+
|
159 |
+
>>> # Load using an already open SoundFile object
|
160 |
+
>>> import soundfile
|
161 |
+
>>> sfo = soundfile.SoundFile(librosa.ex('brahms'))
|
162 |
+
>>> y, sr = librosa.load(sfo)
|
163 |
+
|
164 |
+
>>> # Load using an already open audioread object
|
165 |
+
>>> import audioread.ffdec # Use ffmpeg decoder
|
166 |
+
>>> aro = audioread.ffdec.FFmpegAudioFile(librosa.ex('brahms'))
|
167 |
+
>>> y, sr = librosa.load(aro)
|
168 |
+
"""
|
169 |
+
|
170 |
+
if isinstance(path, tuple(audioread.available_backends())):
|
171 |
+
# Force the audioread loader if we have a reader object already
|
172 |
+
y, sr_native = __audioread_load(path, offset, duration, dtype)
|
173 |
+
else:
|
174 |
+
# Otherwise try soundfile first, and then fall back if necessary
|
175 |
+
try:
|
176 |
+
y, sr_native = __soundfile_load(path, offset, duration, dtype)
|
177 |
+
|
178 |
+
except sf.SoundFileRuntimeError as exc:
|
179 |
+
# If soundfile failed, try audioread instead
|
180 |
+
if isinstance(path, (str, pathlib.PurePath)):
|
181 |
+
warnings.warn(
|
182 |
+
"PySoundFile failed. Trying audioread instead.", stacklevel=2
|
183 |
+
)
|
184 |
+
y, sr_native = __audioread_load(path, offset, duration, dtype)
|
185 |
+
else:
|
186 |
+
raise exc
|
187 |
+
|
188 |
+
# Final cleanup for dtype and contiguity
|
189 |
+
if mono:
|
190 |
+
y = to_mono(y)
|
191 |
+
|
192 |
+
if sr is not None:
|
193 |
+
y = resample(y, orig_sr=sr_native, target_sr=sr, res_type=res_type)
|
194 |
+
|
195 |
+
else:
|
196 |
+
sr = sr_native
|
197 |
+
|
198 |
+
return y, sr
|
199 |
+
|
200 |
+
|
201 |
+
def __soundfile_load(path, offset, duration, dtype):
|
202 |
+
"""Load an audio buffer using soundfile."""
|
203 |
+
if isinstance(path, sf.SoundFile):
|
204 |
+
# If the user passed an existing soundfile object,
|
205 |
+
# we can use it directly
|
206 |
+
context = path
|
207 |
+
else:
|
208 |
+
# Otherwise, create the soundfile object
|
209 |
+
context = sf.SoundFile(path)
|
210 |
+
|
211 |
+
with context as sf_desc:
|
212 |
+
sr_native = sf_desc.samplerate
|
213 |
+
if offset:
|
214 |
+
# Seek to the start of the target read
|
215 |
+
sf_desc.seek(int(offset * sr_native))
|
216 |
+
if duration is not None:
|
217 |
+
frame_duration = int(duration * sr_native)
|
218 |
+
else:
|
219 |
+
frame_duration = -1
|
220 |
+
|
221 |
+
# Load the target number of frames, and transpose to match librosa form
|
222 |
+
y = sf_desc.read(frames=frame_duration, dtype=dtype, always_2d=False).T
|
223 |
+
|
224 |
+
return y, sr_native
|
225 |
+
|
226 |
+
|
227 |
+
@deprecated(version="0.10.0", version_removed="1.0")
|
228 |
+
def __audioread_load(path, offset, duration, dtype: DTypeLike):
|
229 |
+
"""Load an audio buffer using audioread.
|
230 |
+
|
231 |
+
This loads one block at a time, and then concatenates the results.
|
232 |
+
"""
|
233 |
+
|
234 |
+
buf = []
|
235 |
+
|
236 |
+
if isinstance(path, tuple(audioread.available_backends())):
|
237 |
+
# If we have an audioread object already, don't bother opening
|
238 |
+
reader = path
|
239 |
+
else:
|
240 |
+
# If the input was not an audioread object, try to open it
|
241 |
+
reader = audioread.audio_open(path)
|
242 |
+
|
243 |
+
with reader as input_file:
|
244 |
+
sr_native = input_file.samplerate
|
245 |
+
n_channels = input_file.channels
|
246 |
+
|
247 |
+
s_start = int(np.round(sr_native * offset)) * n_channels
|
248 |
+
|
249 |
+
if duration is None:
|
250 |
+
s_end = np.inf
|
251 |
+
else:
|
252 |
+
s_end = s_start + (int(np.round(sr_native * duration)) * n_channels)
|
253 |
+
|
254 |
+
n = 0
|
255 |
+
|
256 |
+
for frame in input_file:
|
257 |
+
frame = util.buf_to_float(frame, dtype=dtype)
|
258 |
+
n_prev = n
|
259 |
+
n = n + len(frame)
|
260 |
+
|
261 |
+
if n < s_start:
|
262 |
+
# offset is after the current frame
|
263 |
+
# keep reading
|
264 |
+
continue
|
265 |
+
|
266 |
+
if s_end < n_prev:
|
267 |
+
# we're off the end. stop reading
|
268 |
+
break
|
269 |
+
|
270 |
+
if s_end < n:
|
271 |
+
# the end is in this frame. crop.
|
272 |
+
frame = frame[: int(s_end - n_prev)] # pragma: no cover
|
273 |
+
|
274 |
+
if n_prev <= s_start <= n:
|
275 |
+
# beginning is in this frame
|
276 |
+
frame = frame[(s_start - n_prev) :]
|
277 |
+
|
278 |
+
# tack on the current frame
|
279 |
+
buf.append(frame)
|
280 |
+
|
281 |
+
if buf:
|
282 |
+
y = np.concatenate(buf)
|
283 |
+
if n_channels > 1:
|
284 |
+
y = y.reshape((-1, n_channels)).T
|
285 |
+
else:
|
286 |
+
y = np.empty(0, dtype=dtype)
|
287 |
+
|
288 |
+
return y, sr_native
|
289 |
+
|
290 |
+
|
291 |
+
def stream(
|
292 |
+
path: Union[str, int, sf.SoundFile, BinaryIO],
|
293 |
+
*,
|
294 |
+
block_length: int,
|
295 |
+
frame_length: int,
|
296 |
+
hop_length: int,
|
297 |
+
mono: bool = True,
|
298 |
+
offset: float = 0.0,
|
299 |
+
duration: Optional[float] = None,
|
300 |
+
fill_value: Optional[float] = None,
|
301 |
+
dtype: DTypeLike = np.float32,
|
302 |
+
) -> Generator[np.ndarray, None, None]:
|
303 |
+
"""Stream audio in fixed-length buffers.
|
304 |
+
|
305 |
+
This is primarily useful for processing large files that won't
|
306 |
+
fit entirely in memory at once.
|
307 |
+
|
308 |
+
Instead of loading the entire audio signal into memory (as
|
309 |
+
in `load`, this function produces *blocks* of audio spanning
|
310 |
+
a fixed number of frames at a specified frame length and hop
|
311 |
+
length.
|
312 |
+
|
313 |
+
While this function strives for similar behavior to `load`,
|
314 |
+
there are a few caveats that users should be aware of:
|
315 |
+
|
316 |
+
1. This function does not return audio buffers directly.
|
317 |
+
It returns a generator, which you can iterate over
|
318 |
+
to produce blocks of audio. A *block*, in this context,
|
319 |
+
refers to a buffer of audio which spans a given number of
|
320 |
+
(potentially overlapping) frames.
|
321 |
+
2. Automatic sample-rate conversion is not supported.
|
322 |
+
Audio will be streamed in its native sample rate,
|
323 |
+
so no default values are provided for ``frame_length``
|
324 |
+
and ``hop_length``. It is recommended that you first
|
325 |
+
get the sampling rate for the file in question, using
|
326 |
+
`get_samplerate`, and set these parameters accordingly.
|
327 |
+
3. Many analyses require access to the entire signal
|
328 |
+
to behave correctly, such as `resample`, `cqt`, or
|
329 |
+
`beat_track`, so these methods will not be appropriate
|
330 |
+
for streamed data.
|
331 |
+
4. The ``block_length`` parameter specifies how many frames
|
332 |
+
of audio will be produced per block. Larger values will
|
333 |
+
consume more memory, but will be more efficient to process
|
334 |
+
down-stream. The best value will ultimately depend on your
|
335 |
+
application and other system constraints.
|
336 |
+
5. By default, most librosa analyses (e.g., short-time Fourier
|
337 |
+
transform) assume centered frames, which requires padding the
|
338 |
+
signal at the beginning and end. This will not work correctly
|
339 |
+
when the signal is carved into blocks, because it would introduce
|
340 |
+
padding in the middle of the signal. To disable this feature,
|
341 |
+
use ``center=False`` in all frame-based analyses.
|
342 |
+
|
343 |
+
See the examples below for proper usage of this function.
|
344 |
+
|
345 |
+
Parameters
|
346 |
+
----------
|
347 |
+
path : string, int, sf.SoundFile, or file-like object
|
348 |
+
path to the input file to stream.
|
349 |
+
|
350 |
+
Any codec supported by `soundfile` is permitted here.
|
351 |
+
|
352 |
+
An existing `soundfile.SoundFile` object may also be provided.
|
353 |
+
|
354 |
+
block_length : int > 0
|
355 |
+
The number of frames to include in each block.
|
356 |
+
|
357 |
+
Note that at the end of the file, there may not be enough
|
358 |
+
data to fill an entire block, resulting in a shorter block
|
359 |
+
by default. To pad the signal out so that blocks are always
|
360 |
+
full length, set ``fill_value`` (see below).
|
361 |
+
|
362 |
+
frame_length : int > 0
|
363 |
+
The number of samples per frame.
|
364 |
+
|
365 |
+
hop_length : int > 0
|
366 |
+
The number of samples to advance between frames.
|
367 |
+
|
368 |
+
Note that by when ``hop_length < frame_length``, neighboring frames
|
369 |
+
will overlap. Similarly, the last frame of one *block* will overlap
|
370 |
+
with the first frame of the next *block*.
|
371 |
+
|
372 |
+
mono : bool
|
373 |
+
Convert the signal to mono during streaming
|
374 |
+
|
375 |
+
offset : float
|
376 |
+
Start reading after this time (in seconds)
|
377 |
+
|
378 |
+
duration : float
|
379 |
+
Only load up to this much audio (in seconds)
|
380 |
+
|
381 |
+
fill_value : float [optional]
|
382 |
+
If padding the signal to produce constant-length blocks,
|
383 |
+
this value will be used at the end of the signal.
|
384 |
+
|
385 |
+
In most cases, ``fill_value=0`` (silence) is expected, but
|
386 |
+
you may specify any value here.
|
387 |
+
|
388 |
+
dtype : numeric type
|
389 |
+
data type of audio buffers to be produced
|
390 |
+
|
391 |
+
Yields
|
392 |
+
------
|
393 |
+
y : np.ndarray
|
394 |
+
An audio buffer of (at most)
|
395 |
+
``(block_length-1) * hop_length + frame_length`` samples.
|
396 |
+
|
397 |
+
See Also
|
398 |
+
--------
|
399 |
+
load
|
400 |
+
get_samplerate
|
401 |
+
soundfile.blocks
|
402 |
+
|
403 |
+
Examples
|
404 |
+
--------
|
405 |
+
Apply a short-term Fourier transform to blocks of 256 frames
|
406 |
+
at a time. Note that streaming operation requires left-aligned
|
407 |
+
frames, so we must set ``center=False`` to avoid padding artifacts.
|
408 |
+
|
409 |
+
>>> filename = librosa.ex('brahms')
|
410 |
+
>>> sr = librosa.get_samplerate(filename)
|
411 |
+
>>> stream = librosa.stream(filename,
|
412 |
+
... block_length=256,
|
413 |
+
... frame_length=4096,
|
414 |
+
... hop_length=1024)
|
415 |
+
>>> for y_block in stream:
|
416 |
+
... D_block = librosa.stft(y_block, center=False)
|
417 |
+
|
418 |
+
Or compute a mel spectrogram over a stream, using a shorter frame
|
419 |
+
and non-overlapping windows
|
420 |
+
|
421 |
+
>>> filename = librosa.ex('brahms')
|
422 |
+
>>> sr = librosa.get_samplerate(filename)
|
423 |
+
>>> stream = librosa.stream(filename,
|
424 |
+
... block_length=256,
|
425 |
+
... frame_length=2048,
|
426 |
+
... hop_length=2048)
|
427 |
+
>>> for y_block in stream:
|
428 |
+
... m_block = librosa.feature.melspectrogram(y=y_block, sr=sr,
|
429 |
+
... n_fft=2048,
|
430 |
+
... hop_length=2048,
|
431 |
+
... center=False)
|
432 |
+
|
433 |
+
"""
|
434 |
+
|
435 |
+
if not util.is_positive_int(block_length):
|
436 |
+
raise ParameterError(f"block_length={block_length} must be a positive integer")
|
437 |
+
if not util.is_positive_int(frame_length):
|
438 |
+
raise ParameterError(f"frame_length={frame_length} must be a positive integer")
|
439 |
+
if not util.is_positive_int(hop_length):
|
440 |
+
raise ParameterError(f"hop_length={hop_length} must be a positive integer")
|
441 |
+
|
442 |
+
if isinstance(path, sf.SoundFile):
|
443 |
+
sfo = path
|
444 |
+
else:
|
445 |
+
sfo = sf.SoundFile(path)
|
446 |
+
|
447 |
+
# Get the sample rate from the file info
|
448 |
+
sr = sfo.samplerate
|
449 |
+
|
450 |
+
# Construct the stream
|
451 |
+
if offset:
|
452 |
+
start = int(offset * sr)
|
453 |
+
else:
|
454 |
+
start = 0
|
455 |
+
|
456 |
+
if duration:
|
457 |
+
frames = int(duration * sr)
|
458 |
+
else:
|
459 |
+
frames = -1
|
460 |
+
|
461 |
+
# Seek the soundfile object to the starting frame
|
462 |
+
sfo.seek(start)
|
463 |
+
|
464 |
+
blocks = sfo.blocks(
|
465 |
+
blocksize=frame_length + (block_length - 1) * hop_length,
|
466 |
+
overlap=frame_length - hop_length,
|
467 |
+
frames=frames,
|
468 |
+
dtype=dtype,
|
469 |
+
always_2d=False,
|
470 |
+
fill_value=fill_value,
|
471 |
+
)
|
472 |
+
|
473 |
+
for block in blocks:
|
474 |
+
if mono:
|
475 |
+
yield to_mono(block.T)
|
476 |
+
else:
|
477 |
+
yield block.T
|
478 |
+
|
479 |
+
|
480 |
+
@cache(level=20)
|
481 |
+
def to_mono(y: np.ndarray) -> np.ndarray:
|
482 |
+
"""Convert an audio signal to mono by averaging samples across channels.
|
483 |
+
|
484 |
+
Parameters
|
485 |
+
----------
|
486 |
+
y : np.ndarray [shape=(..., n)]
|
487 |
+
audio time series. Multi-channel is supported.
|
488 |
+
|
489 |
+
Returns
|
490 |
+
-------
|
491 |
+
y_mono : np.ndarray [shape=(n,)]
|
492 |
+
``y`` as a monophonic time-series
|
493 |
+
|
494 |
+
Notes
|
495 |
+
-----
|
496 |
+
This function caches at level 20.
|
497 |
+
|
498 |
+
Examples
|
499 |
+
--------
|
500 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet', hq=True), mono=False)
|
501 |
+
>>> y.shape
|
502 |
+
(2, 117601)
|
503 |
+
>>> y_mono = librosa.to_mono(y)
|
504 |
+
>>> y_mono.shape
|
505 |
+
(117601,)
|
506 |
+
|
507 |
+
"""
|
508 |
+
|
509 |
+
# Validate the buffer. Stereo is ok here.
|
510 |
+
util.valid_audio(y, mono=False)
|
511 |
+
|
512 |
+
if y.ndim > 1:
|
513 |
+
y = np.mean(y, axis=tuple(range(y.ndim - 1)))
|
514 |
+
|
515 |
+
return y
|
516 |
+
|
517 |
+
|
518 |
+
@cache(level=20)
|
519 |
+
def resample(
|
520 |
+
y: np.ndarray,
|
521 |
+
*,
|
522 |
+
orig_sr: float,
|
523 |
+
target_sr: float,
|
524 |
+
res_type: str = "soxr_hq",
|
525 |
+
fix: bool = True,
|
526 |
+
scale: bool = False,
|
527 |
+
axis: int = -1,
|
528 |
+
**kwargs: Any,
|
529 |
+
) -> np.ndarray:
|
530 |
+
"""Resample a time series from orig_sr to target_sr
|
531 |
+
|
532 |
+
By default, this uses a high-quality method (`soxr_hq`) for band-limited sinc
|
533 |
+
interpolation. The alternate ``res_type`` values listed below offer different
|
534 |
+
trade-offs of speed and quality.
|
535 |
+
|
536 |
+
Parameters
|
537 |
+
----------
|
538 |
+
y : np.ndarray [shape=(..., n, ...)]
|
539 |
+
audio time series, with `n` samples along the specified axis.
|
540 |
+
|
541 |
+
orig_sr : number > 0 [scalar]
|
542 |
+
original sampling rate of ``y``
|
543 |
+
|
544 |
+
target_sr : number > 0 [scalar]
|
545 |
+
target sampling rate
|
546 |
+
|
547 |
+
res_type : str (default: `soxr_hq`)
|
548 |
+
resample type
|
549 |
+
|
550 |
+
'soxr_vhq', 'soxr_hq', 'soxr_mq' or 'soxr_lq'
|
551 |
+
`soxr` Very high-, High-, Medium-, Low-quality FFT-based bandlimited interpolation.
|
552 |
+
``'soxr_hq'`` is the default setting of `soxr`.
|
553 |
+
'soxr_qq'
|
554 |
+
`soxr` Quick cubic interpolation (very fast, but not bandlimited)
|
555 |
+
'kaiser_best'
|
556 |
+
`resampy` high-quality mode
|
557 |
+
'kaiser_fast'
|
558 |
+
`resampy` faster method
|
559 |
+
'fft' or 'scipy'
|
560 |
+
`scipy.signal.resample` Fourier method.
|
561 |
+
'polyphase'
|
562 |
+
`scipy.signal.resample_poly` polyphase filtering. (fast)
|
563 |
+
'linear'
|
564 |
+
`samplerate` linear interpolation. (very fast, but not bandlimited)
|
565 |
+
'zero_order_hold'
|
566 |
+
`samplerate` repeat the last value between samples. (very fast, but not bandlimited)
|
567 |
+
'sinc_best', 'sinc_medium' or 'sinc_fastest'
|
568 |
+
`samplerate` high-, medium-, and low-quality bandlimited sinc interpolation.
|
569 |
+
|
570 |
+
.. note::
|
571 |
+
Not all options yield a bandlimited interpolator. If you use `soxr_qq`, `polyphase`,
|
572 |
+
`linear`, or `zero_order_hold`, you need to be aware of possible aliasing effects.
|
573 |
+
|
574 |
+
.. note::
|
575 |
+
`samplerate` and `resampy` are not installed with `librosa`.
|
576 |
+
To use `samplerate` or `resampy`, they should be installed manually::
|
577 |
+
|
578 |
+
$ pip install samplerate
|
579 |
+
$ pip install resampy
|
580 |
+
|
581 |
+
.. note::
|
582 |
+
When using ``res_type='polyphase'``, only integer sampling rates are
|
583 |
+
supported.
|
584 |
+
|
585 |
+
fix : bool
|
586 |
+
adjust the length of the resampled signal to be of size exactly
|
587 |
+
``ceil(target_sr * len(y) / orig_sr)``
|
588 |
+
|
589 |
+
scale : bool
|
590 |
+
Scale the resampled signal so that ``y`` and ``y_hat`` have approximately
|
591 |
+
equal total energy.
|
592 |
+
|
593 |
+
axis : int
|
594 |
+
The target axis along which to resample. Defaults to the trailing axis.
|
595 |
+
|
596 |
+
**kwargs : additional keyword arguments
|
597 |
+
If ``fix==True``, additional keyword arguments to pass to
|
598 |
+
`librosa.util.fix_length`.
|
599 |
+
|
600 |
+
Returns
|
601 |
+
-------
|
602 |
+
y_hat : np.ndarray [shape=(..., n * target_sr / orig_sr, ...)]
|
603 |
+
``y`` resampled from ``orig_sr`` to ``target_sr`` along the target axis
|
604 |
+
|
605 |
+
Raises
|
606 |
+
------
|
607 |
+
ParameterError
|
608 |
+
If ``res_type='polyphase'`` and ``orig_sr`` or ``target_sr`` are not both
|
609 |
+
integer-valued.
|
610 |
+
|
611 |
+
See Also
|
612 |
+
--------
|
613 |
+
librosa.util.fix_length
|
614 |
+
scipy.signal.resample
|
615 |
+
resampy
|
616 |
+
samplerate.converters.resample
|
617 |
+
soxr.resample
|
618 |
+
|
619 |
+
Notes
|
620 |
+
-----
|
621 |
+
This function caches at level 20.
|
622 |
+
|
623 |
+
Examples
|
624 |
+
--------
|
625 |
+
Downsample from 22 KHz to 8 KHz
|
626 |
+
|
627 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'), sr=22050)
|
628 |
+
>>> y_8k = librosa.resample(y, orig_sr=sr, target_sr=8000)
|
629 |
+
>>> y.shape, y_8k.shape
|
630 |
+
((117601,), (42668,))
|
631 |
+
"""
|
632 |
+
|
633 |
+
# First, validate the audio buffer
|
634 |
+
util.valid_audio(y, mono=False)
|
635 |
+
|
636 |
+
if orig_sr == target_sr:
|
637 |
+
return y
|
638 |
+
|
639 |
+
ratio = float(target_sr) / orig_sr
|
640 |
+
|
641 |
+
n_samples = int(np.ceil(y.shape[axis] * ratio))
|
642 |
+
|
643 |
+
if res_type in ("scipy", "fft"):
|
644 |
+
y_hat = scipy.signal.resample(y, n_samples, axis=axis)
|
645 |
+
elif res_type == "polyphase":
|
646 |
+
if int(orig_sr) != orig_sr or int(target_sr) != target_sr:
|
647 |
+
raise ParameterError(
|
648 |
+
"polyphase resampling is only supported for integer-valued sampling rates."
|
649 |
+
)
|
650 |
+
|
651 |
+
# For polyphase resampling, we need up- and down-sampling ratios
|
652 |
+
# We can get those from the greatest common divisor of the rates
|
653 |
+
# as long as the rates are integrable
|
654 |
+
orig_sr = int(orig_sr)
|
655 |
+
target_sr = int(target_sr)
|
656 |
+
gcd = np.gcd(orig_sr, target_sr)
|
657 |
+
y_hat = scipy.signal.resample_poly(
|
658 |
+
y, target_sr // gcd, orig_sr // gcd, axis=axis
|
659 |
+
)
|
660 |
+
elif res_type in (
|
661 |
+
"linear",
|
662 |
+
"zero_order_hold",
|
663 |
+
"sinc_best",
|
664 |
+
"sinc_fastest",
|
665 |
+
"sinc_medium",
|
666 |
+
):
|
667 |
+
# Use numpy to vectorize the resampler along the target axis
|
668 |
+
# This is because samplerate does not support ndim>2 generally.
|
669 |
+
y_hat = np.apply_along_axis(
|
670 |
+
samplerate.resample, axis=axis, arr=y, ratio=ratio, converter_type=res_type
|
671 |
+
)
|
672 |
+
elif res_type.startswith("soxr"):
|
673 |
+
# Use numpy to vectorize the resampler along the target axis
|
674 |
+
# This is because soxr does not support ndim>2 generally.
|
675 |
+
y_hat = np.apply_along_axis(
|
676 |
+
soxr.resample,
|
677 |
+
axis=axis,
|
678 |
+
arr=y,
|
679 |
+
in_rate=orig_sr,
|
680 |
+
out_rate=target_sr,
|
681 |
+
quality=res_type,
|
682 |
+
)
|
683 |
+
else:
|
684 |
+
y_hat = resampy.resample(y, orig_sr, target_sr, filter=res_type, axis=axis)
|
685 |
+
|
686 |
+
if fix:
|
687 |
+
y_hat = util.fix_length(y_hat, size=n_samples, axis=axis, **kwargs)
|
688 |
+
|
689 |
+
if scale:
|
690 |
+
y_hat /= np.sqrt(ratio)
|
691 |
+
|
692 |
+
# Match dtypes
|
693 |
+
return np.asarray(y_hat, dtype=y.dtype)
|
694 |
+
|
695 |
+
|
696 |
+
def get_duration(
|
697 |
+
*,
|
698 |
+
y: Optional[np.ndarray] = None,
|
699 |
+
sr: float = 22050,
|
700 |
+
S: Optional[np.ndarray] = None,
|
701 |
+
n_fft: int = 2048,
|
702 |
+
hop_length: int = 512,
|
703 |
+
center: bool = True,
|
704 |
+
path: Optional[Union[str, os.PathLike[Any]]] = None,
|
705 |
+
filename: Optional[Union[str, os.PathLike[Any], Deprecated]] = Deprecated(),
|
706 |
+
) -> float:
|
707 |
+
"""Compute the duration (in seconds) of an audio time series,
|
708 |
+
feature matrix, or filename.
|
709 |
+
|
710 |
+
Examples
|
711 |
+
--------
|
712 |
+
>>> # Load an example audio file
|
713 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
714 |
+
>>> librosa.get_duration(y=y, sr=sr)
|
715 |
+
5.333378684807256
|
716 |
+
|
717 |
+
>>> # Or directly from an audio file
|
718 |
+
>>> librosa.get_duration(filename=librosa.ex('trumpet'))
|
719 |
+
5.333378684807256
|
720 |
+
|
721 |
+
>>> # Or compute duration from an STFT matrix
|
722 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
723 |
+
>>> S = librosa.stft(y)
|
724 |
+
>>> librosa.get_duration(S=S, sr=sr)
|
725 |
+
5.317369614512471
|
726 |
+
|
727 |
+
>>> # Or a non-centered STFT matrix
|
728 |
+
>>> S_left = librosa.stft(y, center=False)
|
729 |
+
>>> librosa.get_duration(S=S_left, sr=sr)
|
730 |
+
5.224489795918367
|
731 |
+
|
732 |
+
Parameters
|
733 |
+
----------
|
734 |
+
y : np.ndarray [shape=(..., n)] or None
|
735 |
+
audio time series. Multi-channel is supported.
|
736 |
+
|
737 |
+
sr : number > 0 [scalar]
|
738 |
+
audio sampling rate of ``y``
|
739 |
+
|
740 |
+
S : np.ndarray [shape=(..., d, t)] or None
|
741 |
+
STFT matrix, or any STFT-derived matrix (e.g., chromagram
|
742 |
+
or mel spectrogram).
|
743 |
+
Durations calculated from spectrogram inputs are only accurate
|
744 |
+
up to the frame resolution. If high precision is required,
|
745 |
+
it is better to use the audio time series directly.
|
746 |
+
|
747 |
+
n_fft : int > 0 [scalar]
|
748 |
+
FFT window size for ``S``
|
749 |
+
|
750 |
+
hop_length : int > 0 [ scalar]
|
751 |
+
number of audio samples between columns of ``S``
|
752 |
+
|
753 |
+
center : boolean
|
754 |
+
- If ``True``, ``S[:, t]`` is centered at ``y[t * hop_length]``
|
755 |
+
- If ``False``, then ``S[:, t]`` begins at ``y[t * hop_length]``
|
756 |
+
|
757 |
+
path : str, path, or file-like
|
758 |
+
If provided, all other parameters are ignored, and the
|
759 |
+
duration is calculated directly from the audio file.
|
760 |
+
Note that this avoids loading the contents into memory,
|
761 |
+
and is therefore useful for querying the duration of
|
762 |
+
long files.
|
763 |
+
|
764 |
+
As in ``load``, this can also be an integer or open file-handle
|
765 |
+
that can be processed by ``soundfile``.
|
766 |
+
|
767 |
+
filename : Deprecated
|
768 |
+
Equivalent to ``path``
|
769 |
+
|
770 |
+
.. warning:: This parameter has been renamed to ``path`` in 0.10.
|
771 |
+
Support for ``filename=`` will be removed in 1.0.
|
772 |
+
|
773 |
+
Returns
|
774 |
+
-------
|
775 |
+
d : float >= 0
|
776 |
+
Duration (in seconds) of the input time series or spectrogram.
|
777 |
+
|
778 |
+
Raises
|
779 |
+
------
|
780 |
+
ParameterError
|
781 |
+
if none of ``y``, ``S``, or ``path`` are provided.
|
782 |
+
|
783 |
+
Notes
|
784 |
+
-----
|
785 |
+
`get_duration` can be applied to a file (``path``), a spectrogram (``S``),
|
786 |
+
or audio buffer (``y, sr``). Only one of these three options should be
|
787 |
+
provided. If you do provide multiple options (e.g., ``path`` and ``S``),
|
788 |
+
then ``path`` takes precedence over ``S``, and ``S`` takes precedence over
|
789 |
+
``(y, sr)``.
|
790 |
+
"""
|
791 |
+
|
792 |
+
path = rename_kw(
|
793 |
+
old_name="filename",
|
794 |
+
old_value=filename,
|
795 |
+
new_name="path",
|
796 |
+
new_value=path,
|
797 |
+
version_deprecated="0.10.0",
|
798 |
+
version_removed="1.0",
|
799 |
+
)
|
800 |
+
|
801 |
+
if path is not None:
|
802 |
+
try:
|
803 |
+
return sf.info(path).duration # type: ignore
|
804 |
+
except sf.SoundFileRuntimeError:
|
805 |
+
warnings.warn(
|
806 |
+
"PySoundFile failed. Trying audioread instead."
|
807 |
+
"\n\tAudioread support is deprecated in librosa 0.10.0"
|
808 |
+
" and will be removed in version 1.0.",
|
809 |
+
stacklevel=2,
|
810 |
+
category=FutureWarning,
|
811 |
+
)
|
812 |
+
with audioread.audio_open(path) as fdesc:
|
813 |
+
return fdesc.duration # type: ignore
|
814 |
+
|
815 |
+
if y is None:
|
816 |
+
if S is None:
|
817 |
+
raise ParameterError("At least one of (y, sr), S, or path must be provided")
|
818 |
+
|
819 |
+
n_frames = S.shape[-1]
|
820 |
+
n_samples = n_fft + hop_length * (n_frames - 1)
|
821 |
+
|
822 |
+
# If centered, we lose half a window from each end of S
|
823 |
+
if center:
|
824 |
+
n_samples = n_samples - 2 * int(n_fft // 2)
|
825 |
+
|
826 |
+
else:
|
827 |
+
n_samples = y.shape[-1]
|
828 |
+
|
829 |
+
return float(n_samples) / sr
|
830 |
+
|
831 |
+
|
832 |
+
def get_samplerate(path: Union[str, int, sf.SoundFile, BinaryIO]) -> float:
|
833 |
+
"""Get the sampling rate for a given file.
|
834 |
+
|
835 |
+
Parameters
|
836 |
+
----------
|
837 |
+
path : string, int, soundfile.SoundFile, or file-like
|
838 |
+
The path to the file to be loaded
|
839 |
+
As in ``load``, this can also be an integer or open file-handle
|
840 |
+
that can be processed by `soundfile`.
|
841 |
+
An existing `soundfile.SoundFile` object can also be supplied.
|
842 |
+
|
843 |
+
Returns
|
844 |
+
-------
|
845 |
+
sr : number > 0
|
846 |
+
The sampling rate of the given audio file
|
847 |
+
|
848 |
+
Examples
|
849 |
+
--------
|
850 |
+
Get the sampling rate for the included audio file
|
851 |
+
|
852 |
+
>>> path = librosa.ex('trumpet')
|
853 |
+
>>> librosa.get_samplerate(path)
|
854 |
+
22050
|
855 |
+
"""
|
856 |
+
try:
|
857 |
+
if isinstance(path, sf.SoundFile):
|
858 |
+
return path.samplerate # type: ignore
|
859 |
+
|
860 |
+
return sf.info(path).samplerate # type: ignore
|
861 |
+
except sf.SoundFileRuntimeError:
|
862 |
+
warnings.warn(
|
863 |
+
"PySoundFile failed. Trying audioread instead."
|
864 |
+
"\n\tAudioread support is deprecated in librosa 0.10.0"
|
865 |
+
" and will be removed in version 1.0.",
|
866 |
+
stacklevel=2,
|
867 |
+
category=FutureWarning,
|
868 |
+
)
|
869 |
+
with audioread.audio_open(path) as fdesc:
|
870 |
+
return fdesc.samplerate # type: ignore
|
871 |
+
|
872 |
+
|
873 |
+
@cache(level=20)
|
874 |
+
def autocorrelate(
|
875 |
+
y: np.ndarray, *, max_size: Optional[int] = None, axis: int = -1
|
876 |
+
) -> np.ndarray:
|
877 |
+
"""Bounded-lag auto-correlation
|
878 |
+
|
879 |
+
Parameters
|
880 |
+
----------
|
881 |
+
y : np.ndarray
|
882 |
+
array to autocorrelate
|
883 |
+
max_size : int > 0 or None
|
884 |
+
maximum correlation lag.
|
885 |
+
If unspecified, defaults to ``y.shape[axis]`` (unbounded)
|
886 |
+
axis : int
|
887 |
+
The axis along which to autocorrelate.
|
888 |
+
By default, the last axis (-1) is taken.
|
889 |
+
|
890 |
+
Returns
|
891 |
+
-------
|
892 |
+
z : np.ndarray
|
893 |
+
truncated autocorrelation ``y*y`` along the specified axis.
|
894 |
+
If ``max_size`` is specified, then ``z.shape[axis]`` is bounded
|
895 |
+
to ``max_size``.
|
896 |
+
|
897 |
+
Notes
|
898 |
+
-----
|
899 |
+
This function caches at level 20.
|
900 |
+
|
901 |
+
Examples
|
902 |
+
--------
|
903 |
+
Compute full autocorrelation of ``y``
|
904 |
+
|
905 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
906 |
+
>>> librosa.autocorrelate(y)
|
907 |
+
array([ 6.899e+02, 6.236e+02, ..., 3.710e-08, -1.796e-08])
|
908 |
+
|
909 |
+
Compute onset strength auto-correlation up to 4 seconds
|
910 |
+
|
911 |
+
>>> import matplotlib.pyplot as plt
|
912 |
+
>>> odf = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512)
|
913 |
+
>>> ac = librosa.autocorrelate(odf, max_size=4 * sr // 512)
|
914 |
+
>>> fig, ax = plt.subplots()
|
915 |
+
>>> ax.plot(ac)
|
916 |
+
>>> ax.set(title='Auto-correlation', xlabel='Lag (frames)')
|
917 |
+
"""
|
918 |
+
|
919 |
+
if max_size is None:
|
920 |
+
max_size = y.shape[axis]
|
921 |
+
|
922 |
+
max_size = int(min(max_size, y.shape[axis]))
|
923 |
+
|
924 |
+
fft = get_fftlib()
|
925 |
+
|
926 |
+
# Pad out the signal to support full-length auto-correlation.
|
927 |
+
n_pad = 2 * y.shape[axis] - 1
|
928 |
+
|
929 |
+
if np.iscomplexobj(y):
|
930 |
+
# Compute the power spectrum along the chosen axis
|
931 |
+
powspec = util.abs2(fft.fft(y, n=n_pad, axis=axis))
|
932 |
+
|
933 |
+
# Convert back to time domain
|
934 |
+
autocorr = fft.ifft(powspec, n=n_pad, axis=axis)
|
935 |
+
else:
|
936 |
+
# Compute the power spectrum along the chosen axis
|
937 |
+
# Pad out the signal to support full-length auto-correlation.
|
938 |
+
powspec = util.abs2(fft.rfft(y, n=n_pad, axis=axis))
|
939 |
+
|
940 |
+
# Convert back to time domain
|
941 |
+
autocorr = fft.irfft(powspec, n=n_pad, axis=axis)
|
942 |
+
|
943 |
+
# Slice down to max_size
|
944 |
+
subslice = [slice(None)] * autocorr.ndim
|
945 |
+
subslice[axis] = slice(max_size)
|
946 |
+
|
947 |
+
autocorr_slice: np.ndarray = autocorr[tuple(subslice)]
|
948 |
+
|
949 |
+
return autocorr_slice
|
950 |
+
|
951 |
+
|
952 |
+
def lpc(y: np.ndarray, *, order: int, axis: int = -1) -> np.ndarray:
|
953 |
+
"""Linear Prediction Coefficients via Burg's method
|
954 |
+
|
955 |
+
This function applies Burg's method to estimate coefficients of a linear
|
956 |
+
filter on ``y`` of order ``order``. Burg's method is an extension to the
|
957 |
+
Yule-Walker approach, which are both sometimes referred to as LPC parameter
|
958 |
+
estimation by autocorrelation.
|
959 |
+
|
960 |
+
It follows the description and implementation approach described in the
|
961 |
+
introduction by Marple. [#]_ N.B. This paper describes a different method, which
|
962 |
+
is not implemented here, but has been chosen for its clear explanation of
|
963 |
+
Burg's technique in its introduction.
|
964 |
+
|
965 |
+
.. [#] Larry Marple.
|
966 |
+
A New Autoregressive Spectrum Analysis Algorithm.
|
967 |
+
IEEE Transactions on Acoustics, Speech, and Signal Processing
|
968 |
+
vol 28, no. 4, 1980.
|
969 |
+
|
970 |
+
Parameters
|
971 |
+
----------
|
972 |
+
y : np.ndarray [shape=(..., n)]
|
973 |
+
Time series to fit. Multi-channel is supported..
|
974 |
+
order : int > 0
|
975 |
+
Order of the linear filter
|
976 |
+
axis : int
|
977 |
+
Axis along which to compute the coefficients
|
978 |
+
|
979 |
+
Returns
|
980 |
+
-------
|
981 |
+
a : np.ndarray [shape=(..., order + 1)]
|
982 |
+
LP prediction error coefficients, i.e. filter denominator polynomial.
|
983 |
+
Note that the length along the specified ``axis`` will be ``order+1``.
|
984 |
+
|
985 |
+
Raises
|
986 |
+
------
|
987 |
+
ParameterError
|
988 |
+
- If ``y`` is not valid audio as per `librosa.util.valid_audio`
|
989 |
+
- If ``order < 1`` or not integer
|
990 |
+
FloatingPointError
|
991 |
+
- If ``y`` is ill-conditioned
|
992 |
+
|
993 |
+
See Also
|
994 |
+
--------
|
995 |
+
scipy.signal.lfilter
|
996 |
+
|
997 |
+
Examples
|
998 |
+
--------
|
999 |
+
Compute LP coefficients of y at order 16 on entire series
|
1000 |
+
|
1001 |
+
>>> y, sr = librosa.load(librosa.ex('libri1'))
|
1002 |
+
>>> librosa.lpc(y, order=16)
|
1003 |
+
|
1004 |
+
Compute LP coefficients, and plot LP estimate of original series
|
1005 |
+
|
1006 |
+
>>> import matplotlib.pyplot as plt
|
1007 |
+
>>> import scipy
|
1008 |
+
>>> y, sr = librosa.load(librosa.ex('libri1'), duration=0.020)
|
1009 |
+
>>> a = librosa.lpc(y, order=2)
|
1010 |
+
>>> b = np.hstack([[0], -1 * a[1:]])
|
1011 |
+
>>> y_hat = scipy.signal.lfilter(b, [1], y)
|
1012 |
+
>>> fig, ax = plt.subplots()
|
1013 |
+
>>> ax.plot(y)
|
1014 |
+
>>> ax.plot(y_hat, linestyle='--')
|
1015 |
+
>>> ax.legend(['y', 'y_hat'])
|
1016 |
+
>>> ax.set_title('LP Model Forward Prediction')
|
1017 |
+
|
1018 |
+
"""
|
1019 |
+
if not util.is_positive_int(order):
|
1020 |
+
raise ParameterError(f"order={order} must be an integer > 0")
|
1021 |
+
|
1022 |
+
util.valid_audio(y, mono=False)
|
1023 |
+
|
1024 |
+
# Move the lpc axis around front, because numba is silly
|
1025 |
+
y = y.swapaxes(axis, 0)
|
1026 |
+
|
1027 |
+
dtype = y.dtype
|
1028 |
+
|
1029 |
+
shape = list(y.shape)
|
1030 |
+
shape[0] = order + 1
|
1031 |
+
|
1032 |
+
ar_coeffs = np.zeros(tuple(shape), dtype=dtype)
|
1033 |
+
ar_coeffs[0] = 1
|
1034 |
+
|
1035 |
+
ar_coeffs_prev = ar_coeffs.copy()
|
1036 |
+
|
1037 |
+
shape[0] = 1
|
1038 |
+
reflect_coeff = np.zeros(shape, dtype=dtype)
|
1039 |
+
den = reflect_coeff.copy()
|
1040 |
+
|
1041 |
+
epsilon = util.tiny(den)
|
1042 |
+
|
1043 |
+
# Call the helper, and swap the results back to the target axis position
|
1044 |
+
return np.swapaxes(
|
1045 |
+
__lpc(y, order, ar_coeffs, ar_coeffs_prev, reflect_coeff, den, epsilon), 0, axis
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
|
1049 |
+
@jit(nopython=True, cache=False) # type: ignore
|
1050 |
+
def __lpc(
|
1051 |
+
y: np.ndarray,
|
1052 |
+
order: int,
|
1053 |
+
ar_coeffs: np.ndarray,
|
1054 |
+
ar_coeffs_prev: np.ndarray,
|
1055 |
+
reflect_coeff: np.ndarray,
|
1056 |
+
den: np.ndarray,
|
1057 |
+
epsilon: float,
|
1058 |
+
) -> np.ndarray:
|
1059 |
+
# This implementation follows the description of Burg's algorithm given in
|
1060 |
+
# section III of Marple's paper referenced in the docstring.
|
1061 |
+
#
|
1062 |
+
# We use the Levinson-Durbin recursion to compute AR coefficients for each
|
1063 |
+
# increasing model order by using those from the last. We maintain two
|
1064 |
+
# arrays and then flip them each time we increase the model order so that
|
1065 |
+
# we may use all the coefficients from the previous order while we compute
|
1066 |
+
# those for the new one. These two arrays hold ar_coeffs for order M and
|
1067 |
+
# order M-1. (Corresponding to a_{M,k} and a_{M-1,k} in eqn 5)
|
1068 |
+
|
1069 |
+
# These two arrays hold the forward and backward prediction error. They
|
1070 |
+
# correspond to f_{M-1,k} and b_{M-1,k} in eqns 10, 11, 13 and 14 of
|
1071 |
+
# Marple. First they are used to compute the reflection coefficient at
|
1072 |
+
# order M from M-1 then are re-used as f_{M,k} and b_{M,k} for each
|
1073 |
+
# iteration of the below loop
|
1074 |
+
fwd_pred_error = y[1:]
|
1075 |
+
bwd_pred_error = y[:-1]
|
1076 |
+
|
1077 |
+
# DEN_{M} from eqn 16 of Marple.
|
1078 |
+
den[0] = np.sum(fwd_pred_error**2 + bwd_pred_error**2, axis=0)
|
1079 |
+
|
1080 |
+
for i in range(order):
|
1081 |
+
# can be removed if we keep the epsilon bias
|
1082 |
+
# if np.any(den <= 0):
|
1083 |
+
# raise FloatingPointError("numerical error, input ill-conditioned?")
|
1084 |
+
|
1085 |
+
# Eqn 15 of Marple, with fwd_pred_error and bwd_pred_error
|
1086 |
+
# corresponding to f_{M-1,k+1} and b{M-1,k} and the result as a_{M,M}
|
1087 |
+
|
1088 |
+
reflect_coeff[0] = np.sum(bwd_pred_error * fwd_pred_error, axis=0)
|
1089 |
+
reflect_coeff[0] *= -2
|
1090 |
+
reflect_coeff[0] /= den[0] + epsilon
|
1091 |
+
|
1092 |
+
# Now we use the reflection coefficient and the AR coefficients from
|
1093 |
+
# the last model order to compute all of the AR coefficients for the
|
1094 |
+
# current one. This is the Levinson-Durbin recursion described in
|
1095 |
+
# eqn 5.
|
1096 |
+
# Note 1: We don't have to care about complex conjugates as our signals
|
1097 |
+
# are all real-valued
|
1098 |
+
# Note 2: j counts 1..order+1, i-j+1 counts order..0
|
1099 |
+
# Note 3: The first element of ar_coeffs* is always 1, which copies in
|
1100 |
+
# the reflection coefficient at the end of the new AR coefficient array
|
1101 |
+
# after the preceding coefficients
|
1102 |
+
|
1103 |
+
ar_coeffs_prev, ar_coeffs = ar_coeffs, ar_coeffs_prev
|
1104 |
+
for j in range(1, i + 2):
|
1105 |
+
# reflection multiply should be broadcast
|
1106 |
+
ar_coeffs[j] = (
|
1107 |
+
ar_coeffs_prev[j] + reflect_coeff[0] * ar_coeffs_prev[i - j + 1]
|
1108 |
+
)
|
1109 |
+
|
1110 |
+
# Update the forward and backward prediction errors corresponding to
|
1111 |
+
# eqns 13 and 14. We start with f_{M-1,k+1} and b_{M-1,k} and use them
|
1112 |
+
# to compute f_{M,k} and b_{M,k}
|
1113 |
+
fwd_pred_error_tmp = fwd_pred_error
|
1114 |
+
fwd_pred_error = fwd_pred_error + reflect_coeff * bwd_pred_error
|
1115 |
+
bwd_pred_error = bwd_pred_error + reflect_coeff * fwd_pred_error_tmp
|
1116 |
+
|
1117 |
+
# SNIP - we are now done with order M and advance. M-1 <- M
|
1118 |
+
|
1119 |
+
# Compute DEN_{M} using the recursion from eqn 17.
|
1120 |
+
#
|
1121 |
+
# reflect_coeff = a_{M-1,M-1} (we have advanced M)
|
1122 |
+
# den = DEN_{M-1} (rhs)
|
1123 |
+
# bwd_pred_error = b_{M-1,N-M+1} (we have advanced M)
|
1124 |
+
# fwd_pred_error = f_{M-1,k} (we have advanced M)
|
1125 |
+
# den <- DEN_{M} (lhs)
|
1126 |
+
#
|
1127 |
+
|
1128 |
+
q = 1.0 - reflect_coeff[0] ** 2
|
1129 |
+
den[0] = q * den[0] - bwd_pred_error[-1] ** 2 - fwd_pred_error[0] ** 2
|
1130 |
+
|
1131 |
+
# Shift up forward error.
|
1132 |
+
#
|
1133 |
+
# fwd_pred_error <- f_{M-1,k+1}
|
1134 |
+
# bwd_pred_error <- b_{M-1,k}
|
1135 |
+
#
|
1136 |
+
# N.B. We do this after computing the denominator using eqn 17 but
|
1137 |
+
# before using it in the numerator in eqn 15.
|
1138 |
+
fwd_pred_error = fwd_pred_error[1:]
|
1139 |
+
bwd_pred_error = bwd_pred_error[:-1]
|
1140 |
+
|
1141 |
+
return ar_coeffs
|
1142 |
+
|
1143 |
+
|
1144 |
+
@stencil # type: ignore
|
1145 |
+
def _zc_stencil(x: np.ndarray, threshold: float, zero_pos: bool) -> np.ndarray:
|
1146 |
+
"""Stencil to compute zero crossings"""
|
1147 |
+
x0 = x[0]
|
1148 |
+
if -threshold <= x0 <= threshold:
|
1149 |
+
x0 = 0
|
1150 |
+
|
1151 |
+
x1 = x[-1]
|
1152 |
+
if -threshold <= x1 <= threshold:
|
1153 |
+
x1 = 0
|
1154 |
+
|
1155 |
+
if zero_pos:
|
1156 |
+
return np.signbit(x0) != np.signbit(x1) # type: ignore
|
1157 |
+
else:
|
1158 |
+
return np.sign(x0) != np.sign(x1) # type: ignore
|
1159 |
+
|
1160 |
+
|
1161 |
+
@guvectorize(
|
1162 |
+
[
|
1163 |
+
"void(float32[:], float32, bool_, bool_[:])",
|
1164 |
+
"void(float64[:], float64, bool_, bool_[:])",
|
1165 |
+
],
|
1166 |
+
"(n),(),()->(n)",
|
1167 |
+
cache=False,
|
1168 |
+
nopython=True,
|
1169 |
+
) # type: ignore
|
1170 |
+
def _zc_wrapper(
|
1171 |
+
x: np.ndarray,
|
1172 |
+
threshold: float,
|
1173 |
+
zero_pos: bool,
|
1174 |
+
y: np.ndarray,
|
1175 |
+
) -> None: # pragma: no cover
|
1176 |
+
"""Vectorized wrapper for zero crossing stencil"""
|
1177 |
+
y[:] = _zc_stencil(x, threshold, zero_pos)
|
1178 |
+
|
1179 |
+
|
1180 |
+
@cache(level=20)
|
1181 |
+
def zero_crossings(
|
1182 |
+
y: np.ndarray,
|
1183 |
+
*,
|
1184 |
+
threshold: float = 1e-10,
|
1185 |
+
ref_magnitude: Optional[Union[float, Callable]] = None,
|
1186 |
+
pad: bool = True,
|
1187 |
+
zero_pos: bool = True,
|
1188 |
+
axis: int = -1,
|
1189 |
+
) -> np.ndarray:
|
1190 |
+
"""Find the zero-crossings of a signal ``y``: indices ``i`` such that
|
1191 |
+
``sign(y[i]) != sign(y[j])``.
|
1192 |
+
|
1193 |
+
If ``y`` is multi-dimensional, then zero-crossings are computed along
|
1194 |
+
the specified ``axis``.
|
1195 |
+
|
1196 |
+
Parameters
|
1197 |
+
----------
|
1198 |
+
y : np.ndarray
|
1199 |
+
The input array
|
1200 |
+
|
1201 |
+
threshold : float >= 0
|
1202 |
+
If non-zero, values where ``-threshold <= y <= threshold`` are
|
1203 |
+
clipped to 0.
|
1204 |
+
|
1205 |
+
ref_magnitude : float > 0 or callable
|
1206 |
+
If numeric, the threshold is scaled relative to ``ref_magnitude``.
|
1207 |
+
|
1208 |
+
If callable, the threshold is scaled relative to
|
1209 |
+
``ref_magnitude(np.abs(y))``.
|
1210 |
+
|
1211 |
+
pad : boolean
|
1212 |
+
If ``True``, then ``y[0]`` is considered a valid zero-crossing.
|
1213 |
+
|
1214 |
+
zero_pos : boolean
|
1215 |
+
If ``True`` then the value 0 is interpreted as having positive sign.
|
1216 |
+
|
1217 |
+
If ``False``, then 0, -1, and +1 all have distinct signs.
|
1218 |
+
|
1219 |
+
axis : int
|
1220 |
+
Axis along which to compute zero-crossings.
|
1221 |
+
|
1222 |
+
Returns
|
1223 |
+
-------
|
1224 |
+
zero_crossings : np.ndarray [shape=y.shape, dtype=boolean]
|
1225 |
+
Indicator array of zero-crossings in ``y`` along the selected axis.
|
1226 |
+
|
1227 |
+
Notes
|
1228 |
+
-----
|
1229 |
+
This function caches at level 20.
|
1230 |
+
|
1231 |
+
Examples
|
1232 |
+
--------
|
1233 |
+
>>> # Generate a time-series
|
1234 |
+
>>> y = np.sin(np.linspace(0, 4 * 2 * np.pi, 20))
|
1235 |
+
>>> y
|
1236 |
+
array([ 0.000e+00, 9.694e-01, 4.759e-01, -7.357e-01,
|
1237 |
+
-8.372e-01, 3.247e-01, 9.966e-01, 1.646e-01,
|
1238 |
+
-9.158e-01, -6.142e-01, 6.142e-01, 9.158e-01,
|
1239 |
+
-1.646e-01, -9.966e-01, -3.247e-01, 8.372e-01,
|
1240 |
+
7.357e-01, -4.759e-01, -9.694e-01, -9.797e-16])
|
1241 |
+
>>> # Compute zero-crossings
|
1242 |
+
>>> z = librosa.zero_crossings(y)
|
1243 |
+
>>> z
|
1244 |
+
array([ True, False, False, True, False, True, False, False,
|
1245 |
+
True, False, True, False, True, False, False, True,
|
1246 |
+
False, True, False, True], dtype=bool)
|
1247 |
+
|
1248 |
+
>>> # Stack y against the zero-crossing indicator
|
1249 |
+
>>> librosa.util.stack([y, z], axis=-1)
|
1250 |
+
array([[ 0.000e+00, 1.000e+00],
|
1251 |
+
[ 9.694e-01, 0.000e+00],
|
1252 |
+
[ 4.759e-01, 0.000e+00],
|
1253 |
+
[ -7.357e-01, 1.000e+00],
|
1254 |
+
[ -8.372e-01, 0.000e+00],
|
1255 |
+
[ 3.247e-01, 1.000e+00],
|
1256 |
+
[ 9.966e-01, 0.000e+00],
|
1257 |
+
[ 1.646e-01, 0.000e+00],
|
1258 |
+
[ -9.158e-01, 1.000e+00],
|
1259 |
+
[ -6.142e-01, 0.000e+00],
|
1260 |
+
[ 6.142e-01, 1.000e+00],
|
1261 |
+
[ 9.158e-01, 0.000e+00],
|
1262 |
+
[ -1.646e-01, 1.000e+00],
|
1263 |
+
[ -9.966e-01, 0.000e+00],
|
1264 |
+
[ -3.247e-01, 0.000e+00],
|
1265 |
+
[ 8.372e-01, 1.000e+00],
|
1266 |
+
[ 7.357e-01, 0.000e+00],
|
1267 |
+
[ -4.759e-01, 1.000e+00],
|
1268 |
+
[ -9.694e-01, 0.000e+00],
|
1269 |
+
[ -9.797e-16, 1.000e+00]])
|
1270 |
+
|
1271 |
+
>>> # Find the indices of zero-crossings
|
1272 |
+
>>> np.nonzero(z)
|
1273 |
+
(array([ 0, 3, 5, 8, 10, 12, 15, 17, 19]),)
|
1274 |
+
"""
|
1275 |
+
|
1276 |
+
if callable(ref_magnitude):
|
1277 |
+
threshold = threshold * ref_magnitude(np.abs(y))
|
1278 |
+
|
1279 |
+
elif ref_magnitude is not None:
|
1280 |
+
threshold = threshold * ref_magnitude
|
1281 |
+
|
1282 |
+
yi = y.swapaxes(-1, axis)
|
1283 |
+
z = np.empty_like(y, dtype=bool)
|
1284 |
+
zi = z.swapaxes(-1, axis)
|
1285 |
+
|
1286 |
+
_zc_wrapper(yi, threshold, zero_pos, zi)
|
1287 |
+
|
1288 |
+
zi[..., 0] = pad
|
1289 |
+
|
1290 |
+
return z
|
1291 |
+
|
1292 |
+
|
1293 |
+
def clicks(
|
1294 |
+
*,
|
1295 |
+
times: Optional[_SequenceLike[_FloatLike_co]] = None,
|
1296 |
+
frames: Optional[_SequenceLike[_IntLike_co]] = None,
|
1297 |
+
sr: float = 22050,
|
1298 |
+
hop_length: int = 512,
|
1299 |
+
click_freq: float = 1000.0,
|
1300 |
+
click_duration: float = 0.1,
|
1301 |
+
click: Optional[np.ndarray] = None,
|
1302 |
+
length: Optional[int] = None,
|
1303 |
+
) -> np.ndarray:
|
1304 |
+
"""Construct a "click track".
|
1305 |
+
|
1306 |
+
This returns a signal with the signal ``click`` sound placed at
|
1307 |
+
each specified time.
|
1308 |
+
|
1309 |
+
Parameters
|
1310 |
+
----------
|
1311 |
+
times : np.ndarray or None
|
1312 |
+
times to place clicks, in seconds
|
1313 |
+
frames : np.ndarray or None
|
1314 |
+
frame indices to place clicks
|
1315 |
+
sr : number > 0
|
1316 |
+
desired sampling rate of the output signal
|
1317 |
+
hop_length : int > 0
|
1318 |
+
if positions are specified by ``frames``, the number of samples between frames.
|
1319 |
+
click_freq : float > 0
|
1320 |
+
frequency (in Hz) of the default click signal. Default is 1KHz.
|
1321 |
+
click_duration : float > 0
|
1322 |
+
duration (in seconds) of the default click signal. Default is 100ms.
|
1323 |
+
click : np.ndarray or None
|
1324 |
+
(optional) click signal sample to use instead of the default click.
|
1325 |
+
Multi-channel is supported.
|
1326 |
+
length : int > 0
|
1327 |
+
desired number of samples in the output signal
|
1328 |
+
|
1329 |
+
Returns
|
1330 |
+
-------
|
1331 |
+
click_signal : np.ndarray
|
1332 |
+
Synthesized click signal.
|
1333 |
+
This will be monophonic by default, or match the number of channels to a provided ``click`` signal.
|
1334 |
+
|
1335 |
+
Raises
|
1336 |
+
------
|
1337 |
+
ParameterError
|
1338 |
+
- If neither ``times`` nor ``frames`` are provided.
|
1339 |
+
- If any of ``click_freq``, ``click_duration``, or ``length`` are out of range.
|
1340 |
+
|
1341 |
+
Examples
|
1342 |
+
--------
|
1343 |
+
>>> # Sonify detected beat events
|
1344 |
+
>>> y, sr = librosa.load(librosa.ex('choice'), duration=10)
|
1345 |
+
>>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr)
|
1346 |
+
>>> y_beats = librosa.clicks(frames=beats, sr=sr)
|
1347 |
+
|
1348 |
+
>>> # Or generate a signal of the same length as y
|
1349 |
+
>>> y_beats = librosa.clicks(frames=beats, sr=sr, length=len(y))
|
1350 |
+
|
1351 |
+
>>> # Or use timing instead of frame indices
|
1352 |
+
>>> times = librosa.frames_to_time(beats, sr=sr)
|
1353 |
+
>>> y_beat_times = librosa.clicks(times=times, sr=sr)
|
1354 |
+
|
1355 |
+
>>> # Or with a click frequency of 880Hz and a 500ms sample
|
1356 |
+
>>> y_beat_times880 = librosa.clicks(times=times, sr=sr,
|
1357 |
+
... click_freq=880, click_duration=0.5)
|
1358 |
+
|
1359 |
+
Display click waveform next to the spectrogram
|
1360 |
+
|
1361 |
+
>>> import matplotlib.pyplot as plt
|
1362 |
+
>>> fig, ax = plt.subplots(nrows=2, sharex=True)
|
1363 |
+
>>> S = librosa.feature.melspectrogram(y=y, sr=sr)
|
1364 |
+
>>> librosa.display.specshow(librosa.power_to_db(S, ref=np.max),
|
1365 |
+
... x_axis='time', y_axis='mel', ax=ax[0])
|
1366 |
+
>>> librosa.display.waveshow(y_beat_times, sr=sr, label='Beat clicks',
|
1367 |
+
... ax=ax[1])
|
1368 |
+
>>> ax[1].legend()
|
1369 |
+
>>> ax[0].label_outer()
|
1370 |
+
>>> ax[0].set_title(None)
|
1371 |
+
"""
|
1372 |
+
|
1373 |
+
# Compute sample positions from time or frames
|
1374 |
+
positions: np.ndarray
|
1375 |
+
if times is None:
|
1376 |
+
if frames is None:
|
1377 |
+
raise ParameterError('either "times" or "frames" must be provided')
|
1378 |
+
|
1379 |
+
positions = frames_to_samples(frames, hop_length=hop_length)
|
1380 |
+
else:
|
1381 |
+
# Convert times to positions
|
1382 |
+
positions = time_to_samples(times, sr=sr)
|
1383 |
+
|
1384 |
+
if click is not None:
|
1385 |
+
# Check that we have a well-formed audio buffer
|
1386 |
+
util.valid_audio(click, mono=False)
|
1387 |
+
|
1388 |
+
else:
|
1389 |
+
# Create default click signal
|
1390 |
+
if click_duration <= 0:
|
1391 |
+
raise ParameterError("click_duration must be strictly positive")
|
1392 |
+
|
1393 |
+
if click_freq <= 0:
|
1394 |
+
raise ParameterError("click_freq must be strictly positive")
|
1395 |
+
|
1396 |
+
angular_freq = 2 * np.pi * click_freq / float(sr)
|
1397 |
+
|
1398 |
+
click = np.logspace(0, -10, num=int(np.round(sr * click_duration)), base=2.0)
|
1399 |
+
|
1400 |
+
click *= np.sin(angular_freq * np.arange(len(click)))
|
1401 |
+
|
1402 |
+
# Set default length
|
1403 |
+
if length is None:
|
1404 |
+
length = positions.max() + click.shape[-1]
|
1405 |
+
else:
|
1406 |
+
if length < 1:
|
1407 |
+
raise ParameterError("length must be a positive integer")
|
1408 |
+
|
1409 |
+
# Filter out any positions past the length boundary
|
1410 |
+
positions = positions[positions < length]
|
1411 |
+
|
1412 |
+
# Pre-allocate click signal
|
1413 |
+
shape = list(click.shape)
|
1414 |
+
shape[-1] = length
|
1415 |
+
click_signal = np.zeros(shape, dtype=np.float32)
|
1416 |
+
|
1417 |
+
# Place clicks
|
1418 |
+
for start in positions:
|
1419 |
+
# Compute the end-point of this click
|
1420 |
+
end = start + click.shape[-1]
|
1421 |
+
|
1422 |
+
if end >= length:
|
1423 |
+
click_signal[..., start:] += click[..., : length - start]
|
1424 |
+
else:
|
1425 |
+
# Normally, just add a click here
|
1426 |
+
click_signal[..., start:end] += click
|
1427 |
+
|
1428 |
+
return click_signal
|
1429 |
+
|
1430 |
+
|
1431 |
+
def tone(
|
1432 |
+
frequency: _FloatLike_co,
|
1433 |
+
*,
|
1434 |
+
sr: float = 22050,
|
1435 |
+
length: Optional[int] = None,
|
1436 |
+
duration: Optional[float] = None,
|
1437 |
+
phi: Optional[float] = None,
|
1438 |
+
) -> np.ndarray:
|
1439 |
+
"""Construct a pure tone (cosine) signal at a given frequency.
|
1440 |
+
|
1441 |
+
Parameters
|
1442 |
+
----------
|
1443 |
+
frequency : float > 0
|
1444 |
+
frequency
|
1445 |
+
sr : number > 0
|
1446 |
+
desired sampling rate of the output signal
|
1447 |
+
length : int > 0
|
1448 |
+
desired number of samples in the output signal.
|
1449 |
+
When both ``duration`` and ``length`` are defined,
|
1450 |
+
``length`` takes priority.
|
1451 |
+
duration : float > 0
|
1452 |
+
desired duration in seconds.
|
1453 |
+
When both ``duration`` and ``length`` are defined,
|
1454 |
+
``length`` takes priority.
|
1455 |
+
phi : float or None
|
1456 |
+
phase offset, in radians. If unspecified, defaults to ``-np.pi * 0.5``.
|
1457 |
+
|
1458 |
+
Returns
|
1459 |
+
-------
|
1460 |
+
tone_signal : np.ndarray [shape=(length,), dtype=float64]
|
1461 |
+
Synthesized pure sine tone signal
|
1462 |
+
|
1463 |
+
Raises
|
1464 |
+
------
|
1465 |
+
ParameterError
|
1466 |
+
- If ``frequency`` is not provided.
|
1467 |
+
- If neither ``length`` nor ``duration`` are provided.
|
1468 |
+
|
1469 |
+
Examples
|
1470 |
+
--------
|
1471 |
+
Generate a pure sine tone A4
|
1472 |
+
|
1473 |
+
>>> tone = librosa.tone(440, duration=1)
|
1474 |
+
|
1475 |
+
Or generate the same signal using `length`
|
1476 |
+
|
1477 |
+
>>> tone = librosa.tone(440, sr=22050, length=22050)
|
1478 |
+
|
1479 |
+
Display spectrogram
|
1480 |
+
|
1481 |
+
>>> import matplotlib.pyplot as plt
|
1482 |
+
>>> fig, ax = plt.subplots()
|
1483 |
+
>>> S = librosa.feature.melspectrogram(y=tone)
|
1484 |
+
>>> librosa.display.specshow(librosa.power_to_db(S, ref=np.max),
|
1485 |
+
... x_axis='time', y_axis='mel', ax=ax)
|
1486 |
+
"""
|
1487 |
+
|
1488 |
+
if frequency is None:
|
1489 |
+
raise ParameterError('"frequency" must be provided')
|
1490 |
+
|
1491 |
+
# Compute signal length
|
1492 |
+
if length is None:
|
1493 |
+
if duration is None:
|
1494 |
+
raise ParameterError('either "length" or "duration" must be provided')
|
1495 |
+
length = int(np.ceil(duration * sr))
|
1496 |
+
|
1497 |
+
if phi is None:
|
1498 |
+
phi = -np.pi * 0.5
|
1499 |
+
|
1500 |
+
y: np.ndarray = np.cos(2 * np.pi * frequency * np.arange(length) / sr + phi)
|
1501 |
+
return y
|
1502 |
+
|
1503 |
+
|
1504 |
+
def chirp(
|
1505 |
+
*,
|
1506 |
+
fmin: _FloatLike_co,
|
1507 |
+
fmax: _FloatLike_co,
|
1508 |
+
sr: float = 22050,
|
1509 |
+
length: Optional[int] = None,
|
1510 |
+
duration: Optional[float] = None,
|
1511 |
+
linear: bool = False,
|
1512 |
+
phi: Optional[float] = None,
|
1513 |
+
) -> np.ndarray:
|
1514 |
+
"""Construct a "chirp" or "sine-sweep" signal.
|
1515 |
+
|
1516 |
+
The chirp sweeps from frequency ``fmin`` to ``fmax`` (in Hz).
|
1517 |
+
|
1518 |
+
Parameters
|
1519 |
+
----------
|
1520 |
+
fmin : float > 0
|
1521 |
+
initial frequency
|
1522 |
+
|
1523 |
+
fmax : float > 0
|
1524 |
+
final frequency
|
1525 |
+
|
1526 |
+
sr : number > 0
|
1527 |
+
desired sampling rate of the output signal
|
1528 |
+
|
1529 |
+
length : int > 0
|
1530 |
+
desired number of samples in the output signal.
|
1531 |
+
When both ``duration`` and ``length`` are defined,
|
1532 |
+
``length`` takes priority.
|
1533 |
+
|
1534 |
+
duration : float > 0
|
1535 |
+
desired duration in seconds.
|
1536 |
+
When both ``duration`` and ``length`` are defined,
|
1537 |
+
``length`` takes priority.
|
1538 |
+
|
1539 |
+
linear : boolean
|
1540 |
+
- If ``True``, use a linear sweep, i.e., frequency changes linearly with time
|
1541 |
+
- If ``False``, use a exponential sweep.
|
1542 |
+
|
1543 |
+
Default is ``False``.
|
1544 |
+
|
1545 |
+
phi : float or None
|
1546 |
+
phase offset, in radians.
|
1547 |
+
If unspecified, defaults to ``-np.pi * 0.5``.
|
1548 |
+
|
1549 |
+
Returns
|
1550 |
+
-------
|
1551 |
+
chirp_signal : np.ndarray [shape=(length,), dtype=float64]
|
1552 |
+
Synthesized chirp signal
|
1553 |
+
|
1554 |
+
Raises
|
1555 |
+
------
|
1556 |
+
ParameterError
|
1557 |
+
- If either ``fmin`` or ``fmax`` are not provided.
|
1558 |
+
- If neither ``length`` nor ``duration`` are provided.
|
1559 |
+
|
1560 |
+
See Also
|
1561 |
+
--------
|
1562 |
+
scipy.signal.chirp
|
1563 |
+
|
1564 |
+
Examples
|
1565 |
+
--------
|
1566 |
+
Generate a exponential chirp from A2 to A8
|
1567 |
+
|
1568 |
+
>>> exponential_chirp = librosa.chirp(fmin=110, fmax=110*64, duration=1)
|
1569 |
+
|
1570 |
+
Or generate the same signal using ``length``
|
1571 |
+
|
1572 |
+
>>> exponential_chirp = librosa.chirp(fmin=110, fmax=110*64, sr=22050, length=22050)
|
1573 |
+
|
1574 |
+
Or generate a linear chirp instead
|
1575 |
+
|
1576 |
+
>>> linear_chirp = librosa.chirp(fmin=110, fmax=110*64, duration=1, linear=True)
|
1577 |
+
|
1578 |
+
Display spectrogram for both exponential and linear chirps.
|
1579 |
+
|
1580 |
+
>>> import matplotlib.pyplot as plt
|
1581 |
+
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
|
1582 |
+
>>> S_exponential = np.abs(librosa.stft(y=exponential_chirp))
|
1583 |
+
>>> librosa.display.specshow(librosa.amplitude_to_db(S_exponential, ref=np.max),
|
1584 |
+
... x_axis='time', y_axis='linear', ax=ax[0])
|
1585 |
+
>>> ax[0].set(title='Exponential chirp', xlabel=None)
|
1586 |
+
>>> ax[0].label_outer()
|
1587 |
+
>>> S_linear = np.abs(librosa.stft(y=linear_chirp))
|
1588 |
+
>>> librosa.display.specshow(librosa.amplitude_to_db(S_linear, ref=np.max),
|
1589 |
+
... x_axis='time', y_axis='linear', ax=ax[1])
|
1590 |
+
>>> ax[1].set(title='Linear chirp')
|
1591 |
+
"""
|
1592 |
+
|
1593 |
+
if fmin is None or fmax is None:
|
1594 |
+
raise ParameterError('both "fmin" and "fmax" must be provided')
|
1595 |
+
|
1596 |
+
# Compute signal duration
|
1597 |
+
period = 1.0 / sr
|
1598 |
+
if length is None:
|
1599 |
+
if duration is None:
|
1600 |
+
raise ParameterError('either "length" or "duration" must be provided')
|
1601 |
+
else:
|
1602 |
+
duration = period * length
|
1603 |
+
|
1604 |
+
if phi is None:
|
1605 |
+
phi = -np.pi * 0.5
|
1606 |
+
|
1607 |
+
method = "linear" if linear else "logarithmic"
|
1608 |
+
y: np.ndarray = scipy.signal.chirp(
|
1609 |
+
np.arange(int(np.ceil(duration * sr))) / sr,
|
1610 |
+
fmin,
|
1611 |
+
duration,
|
1612 |
+
fmax,
|
1613 |
+
method=method,
|
1614 |
+
phi=phi / np.pi * 180, # scipy.signal.chirp uses degrees for phase offset
|
1615 |
+
)
|
1616 |
+
return y
|
1617 |
+
|
1618 |
+
|
1619 |
+
def mu_compress(
|
1620 |
+
x: Union[np.ndarray, _FloatLike_co], *, mu: float = 255, quantize: bool = True
|
1621 |
+
) -> np.ndarray:
|
1622 |
+
"""mu-law compression
|
1623 |
+
|
1624 |
+
Given an input signal ``-1 <= x <= 1``, the mu-law compression
|
1625 |
+
is calculated by::
|
1626 |
+
|
1627 |
+
sign(x) * ln(1 + mu * abs(x)) / ln(1 + mu)
|
1628 |
+
|
1629 |
+
Parameters
|
1630 |
+
----------
|
1631 |
+
x : np.ndarray with values in [-1, +1]
|
1632 |
+
The input signal to compress
|
1633 |
+
|
1634 |
+
mu : positive number
|
1635 |
+
The compression parameter. Values of the form ``2**n - 1``
|
1636 |
+
(e.g., 15, 31, 63, etc.) are most common.
|
1637 |
+
|
1638 |
+
quantize : bool
|
1639 |
+
If ``True``, quantize the compressed values into ``1 + mu``
|
1640 |
+
distinct integer values.
|
1641 |
+
|
1642 |
+
If ``False``, mu-law compression is applied without quantization.
|
1643 |
+
|
1644 |
+
Returns
|
1645 |
+
-------
|
1646 |
+
x_compressed : np.ndarray
|
1647 |
+
The compressed signal.
|
1648 |
+
|
1649 |
+
Raises
|
1650 |
+
------
|
1651 |
+
ParameterError
|
1652 |
+
If ``x`` has values outside the range [-1, +1]
|
1653 |
+
If ``mu <= 0``
|
1654 |
+
|
1655 |
+
See Also
|
1656 |
+
--------
|
1657 |
+
mu_expand
|
1658 |
+
|
1659 |
+
Examples
|
1660 |
+
--------
|
1661 |
+
Compression without quantization
|
1662 |
+
|
1663 |
+
>>> x = np.linspace(-1, 1, num=16)
|
1664 |
+
>>> x
|
1665 |
+
array([-1. , -0.86666667, -0.73333333, -0.6 , -0.46666667,
|
1666 |
+
-0.33333333, -0.2 , -0.06666667, 0.06666667, 0.2 ,
|
1667 |
+
0.33333333, 0.46666667, 0.6 , 0.73333333, 0.86666667,
|
1668 |
+
1. ])
|
1669 |
+
>>> y = librosa.mu_compress(x, quantize=False)
|
1670 |
+
>>> y
|
1671 |
+
array([-1. , -0.97430198, -0.94432361, -0.90834832, -0.86336132,
|
1672 |
+
-0.80328309, -0.71255496, -0.52124063, 0.52124063, 0.71255496,
|
1673 |
+
0.80328309, 0.86336132, 0.90834832, 0.94432361, 0.97430198,
|
1674 |
+
1. ])
|
1675 |
+
|
1676 |
+
Compression with quantization
|
1677 |
+
|
1678 |
+
>>> y = librosa.mu_compress(x, quantize=True)
|
1679 |
+
>>> y
|
1680 |
+
array([-128, -124, -120, -116, -110, -102, -91, -66, 66, 91, 102,
|
1681 |
+
110, 116, 120, 124, 127])
|
1682 |
+
|
1683 |
+
Compression with quantization and a smaller range
|
1684 |
+
|
1685 |
+
>>> y = librosa.mu_compress(x, mu=15, quantize=True)
|
1686 |
+
>>> y
|
1687 |
+
array([-8, -7, -7, -6, -6, -5, -4, -2, 2, 4, 5, 6, 6, 7, 7, 7])
|
1688 |
+
|
1689 |
+
"""
|
1690 |
+
|
1691 |
+
if mu <= 0:
|
1692 |
+
raise ParameterError(
|
1693 |
+
f"mu-law compression parameter mu={mu} must be strictly positive."
|
1694 |
+
)
|
1695 |
+
|
1696 |
+
if np.any(x < -1) or np.any(x > 1):
|
1697 |
+
raise ParameterError(f"mu-law input x={x} must be in the range [-1, +1].")
|
1698 |
+
|
1699 |
+
x_comp: np.ndarray = np.sign(x) * np.log1p(mu * np.abs(x)) / np.log1p(mu)
|
1700 |
+
|
1701 |
+
if quantize:
|
1702 |
+
y: np.ndarray = (
|
1703 |
+
np.digitize(
|
1704 |
+
x_comp, np.linspace(-1, 1, num=int(1 + mu), endpoint=True), right=True
|
1705 |
+
)
|
1706 |
+
- int(mu + 1) // 2
|
1707 |
+
)
|
1708 |
+
return y
|
1709 |
+
|
1710 |
+
return x_comp
|
1711 |
+
|
1712 |
+
|
1713 |
+
def mu_expand(
|
1714 |
+
x: Union[np.ndarray, _FloatLike_co], *, mu: float = 255.0, quantize: bool = True
|
1715 |
+
) -> np.ndarray:
|
1716 |
+
"""mu-law expansion
|
1717 |
+
|
1718 |
+
This function is the inverse of ``mu_compress``. Given a mu-law compressed
|
1719 |
+
signal ``-1 <= x <= 1``, the mu-law expansion is calculated by::
|
1720 |
+
|
1721 |
+
sign(x) * (1 / mu) * ((1 + mu)**abs(x) - 1)
|
1722 |
+
|
1723 |
+
Parameters
|
1724 |
+
----------
|
1725 |
+
x : np.ndarray
|
1726 |
+
The compressed signal.
|
1727 |
+
If ``quantize=True``, values must be in the range [-1, +1].
|
1728 |
+
mu : positive number
|
1729 |
+
The compression parameter. Values of the form ``2**n - 1``
|
1730 |
+
(e.g., 15, 31, 63, etc.) are most common.
|
1731 |
+
quantize : boolean
|
1732 |
+
If ``True``, the input is assumed to be quantized to
|
1733 |
+
``1 + mu`` distinct integer values.
|
1734 |
+
|
1735 |
+
Returns
|
1736 |
+
-------
|
1737 |
+
x_expanded : np.ndarray with values in the range [-1, +1]
|
1738 |
+
The mu-law expanded signal.
|
1739 |
+
|
1740 |
+
Raises
|
1741 |
+
------
|
1742 |
+
ParameterError
|
1743 |
+
If ``x`` has values outside the range [-1, +1] and ``quantize=False``
|
1744 |
+
If ``mu <= 0``
|
1745 |
+
|
1746 |
+
See Also
|
1747 |
+
--------
|
1748 |
+
mu_compress
|
1749 |
+
|
1750 |
+
Examples
|
1751 |
+
--------
|
1752 |
+
Compress and expand without quantization
|
1753 |
+
|
1754 |
+
>>> x = np.linspace(-1, 1, num=16)
|
1755 |
+
>>> x
|
1756 |
+
array([-1. , -0.86666667, -0.73333333, -0.6 , -0.46666667,
|
1757 |
+
-0.33333333, -0.2 , -0.06666667, 0.06666667, 0.2 ,
|
1758 |
+
0.33333333, 0.46666667, 0.6 , 0.73333333, 0.86666667,
|
1759 |
+
1. ])
|
1760 |
+
>>> y = librosa.mu_compress(x, quantize=False)
|
1761 |
+
>>> y
|
1762 |
+
array([-1. , -0.97430198, -0.94432361, -0.90834832, -0.86336132,
|
1763 |
+
-0.80328309, -0.71255496, -0.52124063, 0.52124063, 0.71255496,
|
1764 |
+
0.80328309, 0.86336132, 0.90834832, 0.94432361, 0.97430198,
|
1765 |
+
1. ])
|
1766 |
+
>>> z = librosa.mu_expand(y, quantize=False)
|
1767 |
+
>>> z
|
1768 |
+
array([-1. , -0.86666667, -0.73333333, -0.6 , -0.46666667,
|
1769 |
+
-0.33333333, -0.2 , -0.06666667, 0.06666667, 0.2 ,
|
1770 |
+
0.33333333, 0.46666667, 0.6 , 0.73333333, 0.86666667,
|
1771 |
+
1. ])
|
1772 |
+
|
1773 |
+
Compress and expand with quantization. Note that this necessarily
|
1774 |
+
incurs quantization error, particularly for values near +-1.
|
1775 |
+
|
1776 |
+
>>> y = librosa.mu_compress(x, quantize=True)
|
1777 |
+
>>> y
|
1778 |
+
array([-128, -124, -120, -116, -110, -102, -91, -66, 66, 91, 102,
|
1779 |
+
110, 116, 120, 124, 127])
|
1780 |
+
>>> z = librosa.mu_expand(y, quantize=True)
|
1781 |
+
array([-1. , -0.84027248, -0.70595818, -0.59301377, -0.4563785 ,
|
1782 |
+
-0.32155973, -0.19817918, -0.06450245, 0.06450245, 0.19817918,
|
1783 |
+
0.32155973, 0.4563785 , 0.59301377, 0.70595818, 0.84027248,
|
1784 |
+
0.95743702])
|
1785 |
+
"""
|
1786 |
+
if mu <= 0:
|
1787 |
+
raise ParameterError(
|
1788 |
+
f"Inverse mu-law compression parameter mu={mu} must be strictly positive."
|
1789 |
+
)
|
1790 |
+
|
1791 |
+
if quantize:
|
1792 |
+
x = x * 2.0 / (1 + mu)
|
1793 |
+
|
1794 |
+
if np.any(x < -1) or np.any(x > 1):
|
1795 |
+
raise ParameterError(
|
1796 |
+
f"Inverse mu-law input x={x} must be in the range [-1, +1]."
|
1797 |
+
)
|
1798 |
+
|
1799 |
+
return np.sign(x) / mu * (np.power(1 + mu, np.abs(x)) - 1)
|