metaambod / asr.py
unijoh's picture
Update asr.py
413f61e verified
raw
history blame
1.9 kB
import librosa
from transformers import AutoProcessor, Wav2Vec2ForCTC
import torch
import logging
# Set up logging
logging.basicConfig(level=logging.DEBUG)
ASR_SAMPLING_RATE = 16_000
MODEL_ID = "facebook/mms-1b-all"
try:
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
logging.info("ASR model and processor loaded successfully.")
except Exception as e:
logging.error(f"Error loading ASR model or processor: {e}")
def transcribe(audio):
try:
if audio is None:
logging.error("No audio file provided")
return "ERROR: You have to either use the microphone or upload an audio file"
logging.info(f"Loading audio file: {audio}")
# Try loading the audio file with librosa
try:
audio_samples, _ = librosa.load(audio, sr=ASR_SAMPLING_RATE, mono=True)
except FileNotFoundError:
logging.error("Audio file not found")
return "ERROR: Audio file not found"
except Exception as e:
logging.error(f"Error loading audio file with librosa: {e}")
return f"ERROR: Unable to load audio file - {e}"
# Set the language for the processor to Faroese
lang_code = "fao"
processor.tokenizer.set_target_lang(lang_code)
model.load_adapter(lang_code)
# Process the audio with the processor
inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
logging.info("Transcription completed successfully.")
return transcription
except Exception as e:
logging.error(f"Error during transcription: {e}")
return "ERROR"