Update asr.py
Browse files
asr.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import librosa
|
2 |
-
from transformers import pipeline
|
3 |
import logging
|
4 |
|
5 |
# Set up logging
|
@@ -10,7 +10,7 @@ MODEL_ID = "facebook/mms-1b-all"
|
|
10 |
|
11 |
try:
|
12 |
# Create the pipeline with the appropriate model
|
13 |
-
pipe = pipeline("automatic-speech-recognition", model=MODEL_ID)
|
14 |
logging.info("ASR pipeline loaded successfully.")
|
15 |
except Exception as e:
|
16 |
logging.error(f"Error loading ASR pipeline: {e}")
|
@@ -35,7 +35,7 @@ def transcribe(audio):
|
|
35 |
|
36 |
# Process the audio with the pipeline
|
37 |
try:
|
38 |
-
transcription = pipe(audio_samples,
|
39 |
except Exception as e:
|
40 |
logging.error(f"Error during transcription with pipeline: {e}")
|
41 |
return f"ERROR: Transcription failed - {e}"
|
|
|
1 |
import librosa
|
2 |
+
from transformers import pipeline
|
3 |
import logging
|
4 |
|
5 |
# Set up logging
|
|
|
10 |
|
11 |
try:
|
12 |
# Create the pipeline with the appropriate model
|
13 |
+
pipe = pipeline("automatic-speech-recognition", model=MODEL_ID, tokenizer=MODEL_ID)
|
14 |
logging.info("ASR pipeline loaded successfully.")
|
15 |
except Exception as e:
|
16 |
logging.error(f"Error loading ASR pipeline: {e}")
|
|
|
35 |
|
36 |
# Process the audio with the pipeline
|
37 |
try:
|
38 |
+
transcription = pipe(audio_samples, chunk_length_s=10, stride_length_s=5)["text"]
|
39 |
except Exception as e:
|
40 |
logging.error(f"Error during transcription with pipeline: {e}")
|
41 |
return f"ERROR: Transcription failed - {e}"
|