unijoh commited on
Commit
41d6250
·
verified ·
1 Parent(s): 3a1800f

Update tts.py

Browse files
Files changed (1) hide show
  1. tts.py +10 -33
tts.py CHANGED
@@ -1,42 +1,19 @@
1
- import torch
2
- from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor
3
- import logging
4
  import numpy as np
5
- import soundfile as sf
6
  import torchaudio
7
-
8
- # Set up logging
9
- logging.basicConfig(level=logging.DEBUG)
10
-
11
- MODEL_ID = "microsoft/speecht5_tts"
12
-
13
- # Try to load the model and processor
14
- try:
15
- processor = SpeechT5Processor.from_pretrained(MODEL_ID)
16
- model = SpeechT5ForTextToSpeech.from_pretrained(MODEL_ID)
17
- logging.info("Model and processor loaded successfully.")
18
- except Exception as e:
19
- logging.error(f"Error loading model or processor: {e}")
20
 
21
  def synthesize_speech(text):
22
  try:
23
- inputs = processor(text, return_tensors="pt")
24
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
25
- model.to(device)
26
- inputs = inputs.to(device)
27
-
28
- with torch.no_grad():
29
- speech = model.generate(**inputs)
30
-
31
- logging.info("Speech generated successfully.")
32
 
33
- # Decode the generated speech and save to an audio file
34
- waveform = speech.cpu().numpy().flatten()
35
- # Use torchaudio to save the waveform
36
- file_path = "/tmp/output.wav" # Use a temporary directory
37
- torchaudio.save(file_path, torch.tensor(waveform).unsqueeze(0), 16000)
38
- logging.info(f"Audio file saved successfully at {file_path}.")
39
  return file_path
40
  except Exception as e:
41
- logging.error(f"Error during speech synthesis: {e}")
42
  return None
 
 
 
 
1
  import numpy as np
 
2
  import torchaudio
3
+ import logging
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  def synthesize_speech(text):
6
  try:
7
+ # Generate a simple sine wave for testing
8
+ sr = 16000
9
+ t = np.linspace(0, 1, sr)
10
+ waveform = 0.5 * np.sin(2 * np.pi * 440 * t).astype(np.float32)
 
 
 
 
 
11
 
12
+ # Save the sine wave to a file
13
+ file_path = "/tmp/output.wav"
14
+ torchaudio.save(file_path, torch.tensor(waveform).unsqueeze(0), sr)
15
+ logging.info(f"Test audio file saved successfully at {file_path}.")
 
 
16
  return file_path
17
  except Exception as e:
18
+ logging.error(f"Error during test audio generation: {e}")
19
  return None