File size: 1,644 Bytes
38116a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
import pandas as pd
from datasets import load_dataset

# Load and parse the CSV file from Hugging Face
def load_data():
    dataset = load_dataset("your-username/your-dataset-name", split="train")
    df = pd.DataFrame(dataset)
    lemmas = {}
    current_lemma = None
    
    for _, row in df.iterrows():
        if row['#ORTO'] == '---':
            current_lemma = None
        elif current_lemma is None:
            current_lemma = row['#ORTO'].replace("ORTO:", "")
            lemmas[current_lemma] = []
        else:
            lemma_data = {
                'PPOS': row['#PPOS'].replace("PPOS:", "") if pd.notna(row['#PPOS']) else "",
                'PHON1': row['#PHON1'].replace("PHON:", "") if pd.notna(row['#PHON1']) else "",
                'PHON2': row['#PHON2'].replace("PHON:", "") if pd.notna(row['#PHON2']) else "",
                'COMM': row['#COMM'] if pd.notna(row['#COMM']) else ""
            }
            lemmas[current_lemma].append(lemma_data)
    
    return lemmas

lemmas = load_data()

def search_lemma(lemma):
    results = lemmas.get(lemma, None)
    if not results:
        return f"No results found for {lemma}"
    response = f"Results for {lemma}:\n\n"
    response += "PPOS\tPHON1\tPHON2\tCOMM\n"
    for result in results:
        response += f"{result['PPOS']}\t{result['PHON1']}\t{result['PHON2']}\t{result['COMM']}\n"
    return response

iface = gr.Interface(
    fn=search_lemma,
    inputs="text",
    outputs="text",
    title="Lemma Search",
    description="Enter a lemma to search for its declensions and pronunciations."
)

if __name__ == "__main__":
    iface.launch()