Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
|
4 |
# Load and parse the CSV file from Hugging Face
|
5 |
def load_data():
|
6 |
-
url = "https://huggingface.co/datasets/unijoh/RAVNlex/
|
7 |
df = pd.read_csv(url, delimiter='\t', encoding='iso-8859-10', names=["#ORTO", "#PPOS", "#PHON1", "#PHON2", "#COMM"], dtype=str)
|
8 |
lemmas = {}
|
9 |
current_lemma = None
|
@@ -31,16 +31,16 @@ lemmas = load_data()
|
|
31 |
|
32 |
def create_noun_table(lemma, forms):
|
33 |
table_data = {
|
34 |
-
'
|
35 |
-
'
|
36 |
-
'
|
37 |
-
'
|
38 |
}
|
39 |
|
40 |
for form in forms:
|
41 |
-
ppos = form['PPOS']
|
42 |
word = form['word']
|
43 |
-
key = ppos[
|
44 |
print(f"Processing: word={word}, ppos={ppos}, key={key}") # Debugging output
|
45 |
if key in table_data:
|
46 |
table_data[key] = word
|
@@ -63,28 +63,28 @@ def create_noun_table(lemma, forms):
|
|
63 |
</thead>
|
64 |
<tbody>
|
65 |
<tr>
|
66 |
-
<td>{table_data['
|
67 |
-
<td>{table_data['
|
68 |
-
<td>{table_data['
|
69 |
-
<td>{table_data['
|
70 |
</tr>
|
71 |
<tr>
|
72 |
-
<td>{table_data['
|
73 |
-
<td>{table_data['
|
74 |
-
<td>{table_data['
|
75 |
-
<td>{table_data['
|
76 |
</tr>
|
77 |
<tr>
|
78 |
-
<td>{table_data['
|
79 |
-
<td>{table_data['
|
80 |
-
<td>{table_data['
|
81 |
-
<td>{table_data['
|
82 |
</tr>
|
83 |
<tr>
|
84 |
-
<td>{table_data['
|
85 |
-
<td>{table_data['
|
86 |
-
<td>{table_data['
|
87 |
-
<td>{table_data['
|
88 |
</tr>
|
89 |
</tbody>
|
90 |
</table>
|
@@ -98,7 +98,7 @@ def search_lemma(lemma):
|
|
98 |
print(f"No results found for {lemma}") # Debugging output
|
99 |
return f"No results found for {lemma}"
|
100 |
|
101 |
-
if '
|
102 |
table = create_noun_table(lemma, results)
|
103 |
else:
|
104 |
table = "Only noun tables are currently supported."
|
|
|
3 |
|
4 |
# Load and parse the CSV file from Hugging Face
|
5 |
def load_data():
|
6 |
+
url = "https://huggingface.co/datasets/unijoh/RAVNlex/blob/main/RAVNlex_small.csv"
|
7 |
df = pd.read_csv(url, delimiter='\t', encoding='iso-8859-10', names=["#ORTO", "#PPOS", "#PHON1", "#PHON2", "#COMM"], dtype=str)
|
8 |
lemmas = {}
|
9 |
current_lemma = None
|
|
|
31 |
|
32 |
def create_noun_table(lemma, forms):
|
33 |
table_data = {
|
34 |
+
'ncmns': '', 'ncmsn==duu': '', 'ncmsa': '', 'ncmsa==duu': '',
|
35 |
+
'ncmsd': '', 'ncmsd==duu': '', 'ncmsg': '', 'ncmsg==dou': '',
|
36 |
+
'ncmpn': '', 'ncmpn==duu': '', 'ncmpa': '', 'ncmpa==duu': '',
|
37 |
+
'ncmpd': '', 'ncmpd==duu': '', 'ncmpg': '', 'ncmpg==dou': ''
|
38 |
}
|
39 |
|
40 |
for form in forms:
|
41 |
+
ppos = form['PPOS'].lower() # Normalize to lowercase
|
42 |
word = form['word']
|
43 |
+
key = ppos.split('=')[0] # Extracting relevant part of PPOS
|
44 |
print(f"Processing: word={word}, ppos={ppos}, key={key}") # Debugging output
|
45 |
if key in table_data:
|
46 |
table_data[key] = word
|
|
|
63 |
</thead>
|
64 |
<tbody>
|
65 |
<tr>
|
66 |
+
<td>{table_data['ncmns']}</td>
|
67 |
+
<td>{table_data['ncmsn==duu']}</td>
|
68 |
+
<td>{table_data['ncmpn']}</td>
|
69 |
+
<td>{table_data['ncmpn==duu']}</td>
|
70 |
</tr>
|
71 |
<tr>
|
72 |
+
<td>{table_data['ncmsa']}</td>
|
73 |
+
<td>{table_data['ncmsa==duu']}</td>
|
74 |
+
<td>{table_data['ncmpa']}</td>
|
75 |
+
<td>{table_data['ncmpa==duu']}</td>
|
76 |
</tr>
|
77 |
<tr>
|
78 |
+
<td>{table_data['ncmsd']}</td>
|
79 |
+
<td>{table_data['ncmsd==duu']}</td>
|
80 |
+
<td>{table_data['ncmpd']}</td>
|
81 |
+
<td>{table_data['ncmpd==duu']}</td>
|
82 |
</tr>
|
83 |
<tr>
|
84 |
+
<td>{table_data['ncmsg']}</td>
|
85 |
+
<td>{table_data['ncmsg==dou']}</td>
|
86 |
+
<td>{table_data['ncmpg']}</td>
|
87 |
+
<td>{table_data['ncmpg==dou']}</td>
|
88 |
</tr>
|
89 |
</tbody>
|
90 |
</table>
|
|
|
98 |
print(f"No results found for {lemma}") # Debugging output
|
99 |
return f"No results found for {lemma}"
|
100 |
|
101 |
+
if 'n' in results[0]['PPOS'].lower():
|
102 |
table = create_noun_table(lemma, results)
|
103 |
else:
|
104 |
table = "Only noun tables are currently supported."
|