pgilles commited on
Commit
fc76259
·
1 Parent(s): f9abde7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -11,7 +11,7 @@ import os
11
  import time
12
 
13
  #Loading the model and the tokenizer
14
- #token_key = os.environ.get("HUGGING_FACE_HUB_TOKEN")
15
  #model_name = "unilux/wav2vec-xls-r-Luxembourgish20-with-LM"
16
  #model_name = "unilux/wav2vec-xlsr-300m-Luxembourgish-with-LM"
17
 
@@ -26,7 +26,7 @@ model_name = "pgilles/whisper-large-v2-lb_cased_01"
26
  #processor = WhisperProcessor.from_pretrained(model_name)
27
 
28
  #p = pipeline("automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder, use_auth_token=token_key)
29
- p = pipeline("automatic-speech-recognition", model=model_name, device=0)
30
 
31
  #p = pipeline("automatic-speech-recognition", model=model_name, use_auth_token = token_key)
32
  #p = pipeline("automatic-speech-recognition", model=model_name, use_auth_token = True)
@@ -41,8 +41,8 @@ def load_data(input_file):
41
  sampling_rate = 16_000
42
  #read the file
43
  speech, sample_rate = librosa.load(input_file, sr=sampling_rate, mono=True)
44
- speech = librosa.effects.trim(speech, top_db= 10)
45
- return speech[0]
46
 
47
  def asr_pipe(input_file):
48
  load_data(input_file)
 
11
  import time
12
 
13
  #Loading the model and the tokenizer
14
+ token_key = os.environ.get("HUGGING_FACE_HUB_TOKEN")
15
  #model_name = "unilux/wav2vec-xls-r-Luxembourgish20-with-LM"
16
  #model_name = "unilux/wav2vec-xlsr-300m-Luxembourgish-with-LM"
17
 
 
26
  #processor = WhisperProcessor.from_pretrained(model_name)
27
 
28
  #p = pipeline("automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder, use_auth_token=token_key)
29
+ p = pipeline("automatic-speech-recognition", model=model_name, device=0, use_auth_token=token_key)
30
 
31
  #p = pipeline("automatic-speech-recognition", model=model_name, use_auth_token = token_key)
32
  #p = pipeline("automatic-speech-recognition", model=model_name, use_auth_token = True)
 
41
  sampling_rate = 16_000
42
  #read the file
43
  speech, sample_rate = librosa.load(input_file, sr=sampling_rate, mono=True)
44
+ #speech = librosa.effects.trim(speech, top_db= 10)
45
+ return speech
46
 
47
  def asr_pipe(input_file):
48
  load_data(input_file)