Spaces:
Running
Running
import gradio as gr | |
# from transformers import pipeline | |
# from transformers.utils import logging | |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader | |
from llama_index.vector_stores.chroma import ChromaVectorStore | |
from llama_index.core import StorageContext | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
import torch | |
from llama_index.core import VectorStoreIndex | |
from llama_index.core import Document | |
from llama_index.core import Settings | |
from llama_index.llms.huggingface import ( | |
HuggingFaceInferenceAPI, | |
HuggingFaceLLM, | |
) | |
from huggingface_hub import login | |
import chromadb as chromadb | |
from chromadb.utils import embedding_functions | |
import shutil | |
import os | |
# | |
last = 0 | |
CHROMA_DATA_PATH = "chroma_data/" | |
EMBED_MODEL = "BAAI/bge-m3" | |
# all-MiniLM-L6-v2 | |
CHUNK_SIZE = 800 | |
CHUNK_OVERLAP = 50 | |
max_results = 3 | |
min_len = 40 | |
min_distance = 0.35 | |
max_distance = 0.6 | |
temperature = 0.55 | |
max_tokens=3072 | |
top_p=0.8 | |
frequency_penalty=0.0 | |
presence_penalty=0.15 | |
jezik = "srpski" | |
system_sr = "Zoveš se U-Chat AI asistent i pomažeš korisniku usluga kompanije United Group. Korisnik postavlja pitanje ili problem, upareno sa dodatnima saznanjima. Na osnovu toga napiši korisniku kratak i ljubazan odgovor koji kompletira njegov zahtev ili mu daje odgovor na pitanje. " | |
# " Ako ne znaš odgovor, reci da ne znaš, ne izmišljaj ga." | |
system_sr += "Usluge kompanije United Group uključuju i kablovsku mrežu za digitalnu televiziju, pristup internetu, uređaj EON SMART BOX za TV sadržaj, kao i fiksnu telefoniju." | |
chroma_client = chromadb.PersistentClient(CHROMA_DATA_PATH) | |
embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction( | |
model_name=EMBED_MODEL | |
) | |
collection = chroma_client.get_or_create_collection( | |
name="chroma_data", | |
embedding_function=embedding_func, | |
metadata={"hnsw:space": "cosine"}, | |
) | |
last = collection.count() | |
# | |
HF_TOKEN = "wncSKewozDfuZCXCyFbYbAMHgUrfcrumkc" | |
# | |
login(token=("hf_" + HF_TOKEN)) | |
system_propmpt = system_sr | |
# "facebook/blenderbot-400M-distill", facebook/blenderbot-400M-distill, stabilityai/stablelm-zephyr-3b, BAAI/bge-small-en-v1.5 | |
Settings.llm = HuggingFaceInferenceAPI(model_name="mistralai/Mistral-Nemo-Instruct-2407", | |
device_map="auto", | |
system_prompt = system_propmpt, | |
context_window=4096, | |
max_new_tokens=256, | |
# stopping_ids=[50278, 50279, 50277, 1, 0], | |
generate_kwargs={"temperature": 0.5, "do_sample": False}, | |
# tokenizer_kwargs={"max_length": 4096}, | |
tokenizer_name="mistralai/Mistral-Nemo-Instruct-2407", | |
) | |
# "BAAI/bge-m3" | |
Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
#documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."), | |
# Document(text="Indian parliament elections happened in April-May 2021. XYZ Party won."), | |
# Document(text="Indian parliament elections happened in 2020. ABC Party won."), | |
# ] | |
#index = VectorStoreIndex.from_documents( | |
# documents, | |
#) | |
vector_store = ChromaVectorStore(chroma_collection=collection) | |
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=Settings.embed_model) | |
query_engine = index.as_query_engine() | |
def rag(input_text, file): | |
if (file): | |
# documents = [] | |
# for f in file: | |
# documents += SimpleDirectoryReader(f).load_data() | |
# f = file + "*.pdf" | |
pathname = os.path.dirname | |
# shutil.copyfile(file.name, path) | |
print("pathname=", pathname) | |
print("basename=", os.path.basename(file)) | |
print("filename=", file.name) | |
documents = SimpleDirectoryReader(file).load_data() | |
index2 = VectorStoreIndex.from_documents(documents) | |
query_engine = index2.as_query_engine() | |
return query_engine.query(input_text) | |
# collection.add( | |
# documents=documents, | |
# ids=[f"id{last+i}" for i in range(len(documents))], | |
# metadatas=[{"state": "s0", "next": "s0", "used": False, "source": 'None', "page": -1, "lang": jezik } for i in range(len(documents)) ] | |
# ) | |
else: | |
query_engine = index.as_query_engine() | |
return query_engine.query(input_text) | |
#iface = gr.Interface(fn=rag, inputs=[gr.Textbox(label="Pitanje:", lines=6), gr.File()], | |
# outputs=[gr.Textbox(label="Odgovor:", lines=6)], | |
# title="Kako Vam mogu pomoći?", | |
# description= "UChat" | |
# ) | |
def upload_file(filepath): | |
name = Path(filepath).name | |
documents = SimpleDirectoryReader(file).load_data() | |
index = VectorStoreIndex.from_documents(documents) | |
query_engine = index.as_query_engine() | |
return filepath | |
with gr.Blocks() as iface: | |
gr.Markdown("Uchat") | |
file_out = gr.File() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
inp = gr.Textbox(label="Pitanje:", lines=6) | |
u = gr.UploadButton("Upload a file", file_count="single") | |
with gr.Column(scale=1): | |
out = gr.Textbox(label="Odgovor:", lines=6) | |
sub = gr.Button(label="Pokreni") | |
u.upload(upload_file, u, file_out) | |
sub.click(rag, inp, out) | |
iface.launch() |