uchat / app.py
shoom013's picture
Update app.py
534531a verified
raw
history blame
5.46 kB
import gradio as gr
# from transformers import pipeline
# from transformers.utils import logging
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import torch
from llama_index.core import VectorStoreIndex
from llama_index.core import Document
from llama_index.core import Settings
from llama_index.llms.huggingface import (
HuggingFaceInferenceAPI,
HuggingFaceLLM,
)
from huggingface_hub import login
import chromadb as chromadb
from chromadb.utils import embedding_functions
import shutil
import os
#
last = 0
CHROMA_DATA_PATH = "chroma_data/"
EMBED_MODEL = "BAAI/bge-m3"
# all-MiniLM-L6-v2
CHUNK_SIZE = 800
CHUNK_OVERLAP = 50
max_results = 3
min_len = 40
min_distance = 0.35
max_distance = 0.6
temperature = 0.55
max_tokens=3072
top_p=0.8
frequency_penalty=0.0
presence_penalty=0.15
jezik = "srpski"
system_sr = "Zoveš se U-Chat AI asistent i pomažeš korisniku usluga kompanije United Group. Korisnik postavlja pitanje ili problem, upareno sa dodatnima saznanjima. Na osnovu toga napiši korisniku kratak i ljubazan odgovor koji kompletira njegov zahtev ili mu daje odgovor na pitanje. "
# " Ako ne znaš odgovor, reci da ne znaš, ne izmišljaj ga."
system_sr += "Usluge kompanije United Group uključuju i kablovsku mrežu za digitalnu televiziju, pristup internetu, uređaj EON SMART BOX za TV sadržaj, kao i fiksnu telefoniju."
chroma_client = chromadb.PersistentClient(CHROMA_DATA_PATH)
embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=EMBED_MODEL
)
collection = chroma_client.get_or_create_collection(
name="chroma_data",
embedding_function=embedding_func,
metadata={"hnsw:space": "cosine"},
)
last = collection.count()
#
HF_TOKEN = "wncSKewozDfuZCXCyFbYbAMHgUrfcrumkc"
#
login(token=("hf_" + HF_TOKEN))
system_propmpt = system_sr
# "facebook/blenderbot-400M-distill", facebook/blenderbot-400M-distill, stabilityai/stablelm-zephyr-3b, BAAI/bge-small-en-v1.5
Settings.llm = HuggingFaceInferenceAPI(model_name="mistralai/Mistral-Nemo-Instruct-2407",
device_map="auto",
system_prompt = system_propmpt,
context_window=4096,
max_new_tokens=256,
# stopping_ids=[50278, 50279, 50277, 1, 0],
generate_kwargs={"temperature": 0.5, "do_sample": False},
# tokenizer_kwargs={"max_length": 4096},
tokenizer_name="mistralai/Mistral-Nemo-Instruct-2407",
)
# "BAAI/bge-m3"
Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
#documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."),
# Document(text="Indian parliament elections happened in April-May 2021. XYZ Party won."),
# Document(text="Indian parliament elections happened in 2020. ABC Party won."),
# ]
#index = VectorStoreIndex.from_documents(
# documents,
#)
vector_store = ChromaVectorStore(chroma_collection=collection)
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=Settings.embed_model)
query_engine = index.as_query_engine()
def rag(input_text, file):
if (file):
# documents = []
# for f in file:
# documents += SimpleDirectoryReader(f).load_data()
# f = file + "*.pdf"
pathname = os.path.dirname
# shutil.copyfile(file.name, path)
print("pathname=", pathname)
print("basename=", os.path.basename(file))
print("filename=", file.name)
documents = SimpleDirectoryReader(file).load_data()
index2 = VectorStoreIndex.from_documents(documents)
query_engine = index2.as_query_engine()
return query_engine.query(input_text)
# collection.add(
# documents=documents,
# ids=[f"id{last+i}" for i in range(len(documents))],
# metadatas=[{"state": "s0", "next": "s0", "used": False, "source": 'None', "page": -1, "lang": jezik } for i in range(len(documents)) ]
# )
else:
query_engine = index.as_query_engine()
return query_engine.query(input_text)
#iface = gr.Interface(fn=rag, inputs=[gr.Textbox(label="Pitanje:", lines=6), gr.File()],
# outputs=[gr.Textbox(label="Odgovor:", lines=6)],
# title="Kako Vam mogu pomoći?",
# description= "UChat"
# )
def upload_file(filepath):
name = Path(filepath).name
documents = SimpleDirectoryReader(file).load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
return filepath
with gr.Blocks() as iface:
gr.Markdown("Uchat")
file_out = gr.File()
with gr.Row():
with gr.Column(scale=1):
inp = gr.Textbox(label="Pitanje:", lines=6)
u = gr.UploadButton("Upload a file", file_count="single")
with gr.Column(scale=1):
out = gr.Textbox(label="Odgovor:", lines=6)
sub = gr.Button(label="Pokreni")
u.upload(upload_file, u, file_out)
sub.click(rag, inp, out)
iface.launch()