import gradio as gr # from transformers import pipeline # from transformers.utils import logging from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core import StorageContext from llama_index.embeddings.huggingface import HuggingFaceEmbedding import torch from llama_index.core import ( VectorStoreIndex, Document, Settings, ) from llama_index.llms.huggingface import (HuggingFaceLLM, HuggingFaceInferenceAPI, ) from llama_index.core.base.llms.types import ChatMessage from huggingface_hub import login import chromadb as chromadb from chromadb.utils import embedding_functions import shutil import os from io import StringIO # last = 0 CHROMA_DATA_PATH = "chroma_data/" EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2" #"BAAI/bge-m3" # all-MiniLM-L6-v2 CHUNK_SIZE = 800 CHUNK_OVERLAP = 50 max_results = 3 min_len = 40 min_distance = 0.35 max_distance = 0.6 temperature = 0.6 max_tokens=5100 top_p=0.8 top_k=1000 frequency_penalty=0.0 repetition_penalty=1.12 presence_penalty=0.15 jezik = "srpski" cs = "s0" system_sr = "Zoveš se U-Chat AI asistent i pomažeš korisniku usluga kompanije United Group. Korisnik postavlja problem ili pitanje na koje očekuje ljubazan odgovor koji rešava njegov problem ili mu daje odgovor na pitanje. " # " Ako ne znaš odgovor, reci da ne znaš, ne izmišljaj ga." system_sr += "Usluge kompanije United Group uključuju i kablovsku mrežu za digitalnu televiziju, pristup internetu, uređaj EON SMART BOX za TV sadržaj, kao i fiksnu telefoniju. " chroma_client = chromadb.PersistentClient(CHROMA_DATA_PATH) embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction( model_name=EMBED_MODEL ) collection = chroma_client.get_or_create_collection( name="chroma_data", embedding_function=embedding_func, metadata={"hnsw:space": "cosine"}, ) last = collection.count() # HF_TOKEN = "wncSKewozDfuZCXCyFbYbAMHgUrfcrumkc" # login(token=("hf_" + HF_TOKEN)) system_propmpt = system_sr # "facebook/blenderbot-400M-distill", facebook/blenderbot-400M-distill, stabilityai/stablelm-zephyr-3b, BAAI/bge-small-en-v1.5 Settings.llm = HuggingFaceInferenceAPI(model_name="mistralai/Mistral-Nemo-Instruct-2407", device_map="auto", system_prompt = system_propmpt, context_window=5100, max_new_tokens=3072, # stopping_ids=[50278, 50279, 50277, 1, 0], generate_kwargs={"temperature": temperature, "top_p":top_p, "repetition_penalty": repetition_penalty, "presence_penalty": presence_penalty, "frequency_penalty": frequency_penalty, "top_k": top_k, "do_sample": False}, # tokenizer_kwargs={"max_length": 4096}, tokenizer_name="mistralai/Mistral-Nemo-Instruct-2407", ) # "BAAI/bge-m3" Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2") #documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."), # ] #index = VectorStoreIndex.from_documents( # documents, #) vector_store = ChromaVectorStore(chroma_collection=collection) index = VectorStoreIndex.from_vector_store(vector_store, embed_model=Settings.embed_model) query_engine = index.as_query_engine( similarity_top_k=3, vector_store_query_mode="default", # filters=MetadataFilters( # filters=[ # ExactMatchFilter(key="state", value=cs), # ] # ), alpha=None, doc_ids=None, ) chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True) def upload_file(filepath): documents = SimpleDirectoryReader(filepath).load_data() index = VectorStoreIndex.from_documents(documents) #query_engine = index.as_query_engine() #condense_question condense_plus_context chat_engine = index.as_chat_engine(chat_mode="best", verbose=True) return filepath def resetChat(): chat_engine.reset() print("Restarted!!!") return True def rag(input_text, history, jezik, file): # if (btn): # resetChat() print(history, input_text) ## if (file): # documents = [] # for f in file: # documents += SimpleDirectoryReader(f).load_data() # f = file + "*.pdf" ## pathname = os.path.dirname # shutil.copyfile(file.name, path) ## print("pathname=", pathname) ## print("basename=", os.path.basename(file)) ## print("filename=", file.name) ## documents = SimpleDirectoryReader(file).load_data() ## index2 = VectorStoreIndex.from_documents(documents) ## query_engine = index2.as_query_engine() # return query_engine.query(input_text) # return history.append({"role": "assistant", "content": query_engine.query(input_text)}) ## return history + [[input_text, query_engine.query(input_text)]] # collection.add( # documents=documents, # ids=[f"id{last+i}" for i in range(len(documents))], # metadatas=[{"state": "s0", "next": "s0", "used": False, "source": 'None', "page": -1, "lang": jezik } for i in range(len(documents)) ] # ) ## else: o_jezik = "N/A" match jezik: case 'hrvatski': o_jezik = 'na hrvatskom jeziku' Settings.llm.system_prompt = system_sr + "Call centar telefon je 095 1000 444 za privatne i 095 1000 500 za poslovne korisnike. Stranica podrške je ." + "Odgovaraj " + o_jezik case 'slovenski': o_jezik = 'v slovenščini' Settings.llm.system_prompt = system_sr + "Call centar i pomoč za fizične uporabnike: 070 700 700.stran za podporo je . " + "Odgovor " + o_jezik case 'srpski': o_jezik = 'na srpskom jeziku' Settings.llm.system_prompt = system_sr + "Call centar telefon je 19900 za sve korisnike. Stranica podrške je . " + "Odgovaraj " + o_jezik case 'makedonski': o_jezik = 'на македонски јазикот' Settings.llm.system_prompt = system_sr + "Stranica podrške je https://mn.nettvplus.com/me/podrska/ za NetTV. " + "Oдговори " + o_jezik case 'Eksperimentalna opcija': o_jezik = 'N/A' Settings.llm.system_prompt = system_sr + "Call centar telefon je 12755 za Crnu Goru, 0800 31111 za BIH, 070 700 700 u Sloveniji, 19900 u Srbiji, 095 1000 444 za hrvatske korisnike. Odgovori na jeziku istom kao i u postavljenom pitanju ili problemu korisnika." # if (o_jezik!='N/A'): # input_text += " - odgovori " + o_jezik + "." # return query_engine.query(input_text) response = chat_engine.chat(input_text).response return response # Interface # gr.Textbox(label="Pitanje:", lines=6), # outputs=[gr.Textbox(label="Odgovor:", lines=6)], # ChatMessage(role="assistant", content="Kako Vam mogu pomoći?") with gr.Blocks() as iface: ichat = gr.ChatInterface(rag, title="UChat", description="Postavite pitanje ili opišite problem koji imate", chatbot=gr.Chatbot(placeholder="Kako Vam mogu pomoći?", type="tuples", label="Agent podrške", height=400), textbox=gr.Textbox(placeholder="Pitanje ili opis problema", container=False, scale=7), theme="soft", # examples=["Ne radi mi internet", "Koje usluge imam na raspologanju?", "Ne radi mi daljinski upravljač, šta da radim?"], # cache_examples=True, retry_btn=None, undo_btn=None, clear_btn="Briši sve - razgovor ispočetka", additional_inputs = [gr.Dropdown(["slovenski", "hrvatski", "srpski", "makedonski", "Eksperimentalna opcija"], value="srpski", label="Jezik", info="N/A"), gr.File() ], autofocus = True ) ichat.clear_btn.click(resetChat) #with gr.Blocks() as iface: # gr.Markdown("Uchat") # file_out = gr.File() # with gr.Row(): # with gr.Column(scale=1): # inp = gr.Textbox(label="Pitanje:", lines=6) # u = gr.UploadButton("Upload a file", file_count="single") # with gr.Column(scale=1): # out = gr.Textbox(label="Odgovor:", lines=6) # sub = gr.Button("Pokreni") # # u.upload(upload_file, u, file_out) # sub.click(rag, inp, out) iface.launch()