Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import evaluate | |
import datasets | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great ML task and is crafted with a lot of care. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
kendall_tau_distance: Kendell's tau distance between predictions and references | |
normalized_kendall_tau_distance: Kendell's tau distance between predictions and references normalized by the number of pairs | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> kendall_tau_distance = evaluate.load("kendall_tau_distance") | |
>>> results = kendall_tau_distance.compute(references=[0, 1], predictions=[0, 1]) | |
>>> print(results) | |
{'kendall_tau_distance': 0, 'normalized_kendall_tau_distance': 0} | |
""" | |
# TODO: Define external resources urls if needed | |
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" | |
class kendalltaudistance(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
'predictions': datasets.Value('int64'), | |
'references': datasets.Value('int64'), | |
}), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _compute(self, predictions, references): | |
"""Returns the scores""" | |
# TODO: Compute the different scores of the module | |
n = len(predictions) | |
assert n == len(references), "The number of predictions and references should be the same" | |
n_discordant_pairs = 0 | |
for i in range(len(predictions)): | |
j = references.index(predictions[i]) | |
n_discordant_pairs += len(set(predictions[:i]).intersection(set(references[j:]))) + len(set(predictions[i+1:]).intersection(set(references[:j]))) | |
n_discordant_pairs = n_discordant_pairs / 2 | |
num_pairs = n * (n - 1) / 2 | |
return { | |
'kendall_tau_distance': n_discordant_pairs, | |
'normalized_kendall_tau_distance': n_discordant_pairs / num_pairs, | |
} |