# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import evaluate import datasets # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This new module is designed to solve this great ML task and is crafted with a lot of care. """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Returns: kendall_tau_distance: Kendell's tau distance between predictions and references normalized_kendall_tau_distance: Kendell's tau distance between predictions and references normalized by the number of pairs Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> kendall_tau_distance = evaluate.load("kendall_tau_distance") >>> results = kendall_tau_distance.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) {'kendall_tau_distance': 0, 'normalized_kendall_tau_distance': 0} """ # TODO: Define external resources urls if needed BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class kendalltaudistance(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'predictions': datasets.Value('int64'), 'references': datasets.Value('int64'), }), # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _compute(self, predictions, references): """Returns the scores""" # TODO: Compute the different scores of the module n = len(predictions) assert n == len(references), "The number of predictions and references should be the same" n_discordant_pairs = 0 for i in range(len(predictions)): j = references.index(predictions[i]) n_discordant_pairs += len(set(predictions[:i]).intersection(set(references[j:]))) + len(set(predictions[i+1:]).intersection(set(references[:j]))) n_discordant_pairs = n_discordant_pairs / 2 num_pairs = n * (n - 1) / 2 return { 'kendall_tau_distance': n_discordant_pairs, 'normalized_kendall_tau_distance': n_discordant_pairs / num_pairs, }