|
from __future__ import annotations |
|
|
|
import os |
|
|
|
import gradio as gr |
|
import torch |
|
from gradio_client import Client |
|
from gradio_client.client import Job |
|
|
|
DESCRIPTION = "# Comparing image captioning models" |
|
ORIGINAL_SPACE_INFO = """\ |
|
- [BLIP fine-tuned for long captions](https://huggingface.co/spaces/unography/image-captioning-with-longcap) |
|
- [GIT-large fine-tuned on COCO](https://huggingface.co/spaces/library-samples/image-captioning-with-git) |
|
- [BLIP-large](https://huggingface.co/spaces/library-samples/image-captioning-with-blip) |
|
- [BLIP-2 OPT 6.7B](https://huggingface.co/spaces/merve/BLIP2-with-transformers) |
|
- [BLIP-2 T5-XXL](https://huggingface.co/spaces/hysts/BLIP2-with-transformers) |
|
- [InstructBLIP](https://huggingface.co/spaces/library-samples/InstructBLIP) |
|
- [Fuyu-8B](https://huggingface.co/spaces/adept/fuyu-8b-demo) |
|
""" |
|
|
|
torch.hub.download_url_to_file("http://images.cocodataset.org/val2017/000000039769.jpg", "cats.jpg") |
|
torch.hub.download_url_to_file( |
|
"https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png", "stop_sign.png" |
|
) |
|
torch.hub.download_url_to_file( |
|
"https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg", "astronaut.jpg" |
|
) |
|
|
|
|
|
def generate_caption_longcap(image_path: str, return_job: bool = False) -> str | Job: |
|
try: |
|
client = Client("hysts/image-captioning-with-git") |
|
fn = client.submit if return_job else client.predict |
|
return fn(image_path, api_name="/caption") |
|
except Exception: |
|
gr.Warning("The GIT-large Space is currently unavailable. Please try again later.") |
|
return "" |
|
|
|
def generate_caption_git(image_path: str, return_job: bool = False) -> str | Job: |
|
try: |
|
client = Client("hysts/image-captioning-with-git") |
|
fn = client.submit if return_job else client.predict |
|
return fn(image_path, api_name="/caption") |
|
except Exception: |
|
gr.Warning("The GIT-large Space is currently unavailable. Please try again later.") |
|
return "" |
|
|
|
|
|
def generate_caption_blip(image_path: str, return_job: bool = False) -> str | Job: |
|
try: |
|
client = Client("hysts/image-captioning-with-blip") |
|
fn = client.submit if return_job else client.predict |
|
return fn(image_path, "A picture of", api_name="/caption") |
|
except Exception: |
|
gr.Warning("The BLIP-large Space is currently unavailable. Please try again later.") |
|
return "" |
|
|
|
|
|
def generate_caption_blip2_opt(image_path: str, return_job: bool = False) -> str | Job: |
|
try: |
|
client = Client("merve/BLIP2-with-transformers") |
|
fn = client.submit if return_job else client.predict |
|
return fn( |
|
image_path, |
|
"Beam search", |
|
1, |
|
1, |
|
1.5, |
|
api_name="/caption", |
|
) |
|
except Exception: |
|
gr.Warning("The BLIP2 OPT6.7B Space is currently unavailable. Please try again later.") |
|
return "" |
|
|
|
|
|
def generate_caption_blip2_t5xxl(image_path: str, return_job: bool = False) -> str | Job: |
|
try: |
|
client = Client("hysts/BLIP2-with-transformers") |
|
fn = client.submit if return_job else client.predict |
|
return fn( |
|
image_path, |
|
"Beam search", |
|
1, |
|
1, |
|
1.5, |
|
50, |
|
1, |
|
5, |
|
0.9, |
|
api_name="/caption", |
|
) |
|
except Exception: |
|
gr.Warning("The BLIP2 T5-XXL Space is currently unavailable. Please try again later.") |
|
return "" |
|
|
|
|
|
def generate_caption_instructblip(image_path: str, return_job: bool = False) -> str | Job: |
|
try: |
|
client = Client("hysts/InstructBLIP") |
|
fn = client.submit if return_job else client.predict |
|
return fn( |
|
image_path, |
|
"Describe the image.", |
|
"Beam search", |
|
5, |
|
256, |
|
1, |
|
0.9, |
|
1.5, |
|
1.0, |
|
1.0, |
|
api_name="/run", |
|
) |
|
except Exception: |
|
gr.Warning("The InstructBLIP Space is currently unavailable. Please try again later.") |
|
return "" |
|
|
|
|
|
def generate_caption_fuyu(image_path: str, return_job: bool = False) -> str | Job: |
|
try: |
|
client = Client("adept/fuyu-8b-demo") |
|
fn = client.submit if return_job else client.predict |
|
return fn(image_path, "Generate a coco style caption.\n", fn_index=3) |
|
except Exception: |
|
gr.Warning("The Fuyu-8B Space is currently unavailable. Please try again later.") |
|
return "" |
|
|
|
|
|
def generate_captions(image_path: str) -> tuple[str, str, str, str, str, str, str]: |
|
jobs = [ |
|
generate_caption_longcap(image_path, return_job=True), |
|
generate_caption_git(image_path, return_job=True), |
|
generate_caption_blip(image_path, return_job=True), |
|
generate_caption_blip2_opt(image_path, return_job=True), |
|
generate_caption_blip2_t5xxl(image_path, return_job=True), |
|
generate_caption_instructblip(image_path, return_job=True), |
|
generate_caption_fuyu(image_path, return_job=True), |
|
] |
|
return tuple(job.result() if job else "" for job in jobs) |
|
|
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(type="filepath") |
|
run_button = gr.Button("Caption") |
|
with gr.Column(): |
|
out_longcap = gr.Textbox(label="BLIP fine-tuned for long captions") |
|
out_git = gr.Textbox(label="GIT-large fine-tuned on COCO") |
|
out_blip = gr.Textbox(label="BLIP-large") |
|
out_blip2_opt = gr.Textbox(label="BLIP-2 OPT 6.7B") |
|
out_blip2_t5xxl = gr.Textbox(label="BLIP-2 T5-XXL") |
|
out_instructblip = gr.Textbox(label="InstructBLIP") |
|
out_fuyu = gr.Textbox(label="Fuyu-8B") |
|
|
|
outputs = [ |
|
out_longcap, |
|
out_git, |
|
out_blip, |
|
out_blip2_opt, |
|
out_blip2_t5xxl, |
|
out_instructblip, |
|
out_fuyu, |
|
] |
|
gr.Examples( |
|
examples=[ |
|
"cats.jpg", |
|
"stop_sign.png", |
|
"astronaut.jpg", |
|
], |
|
inputs=input_image, |
|
outputs=outputs, |
|
fn=generate_captions, |
|
cache_examples=os.getenv("CACHE_EXAMPLES") == "1", |
|
) |
|
|
|
with gr.Accordion(label="The original Spaces can be found here:", open=False): |
|
gr.Markdown(ORIGINAL_SPACE_INFO) |
|
|
|
run_button.click( |
|
fn=generate_captions, |
|
inputs=input_image, |
|
outputs=outputs, |
|
api_name="caption", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|