nielsr HF staff commited on
Commit
2a729e4
·
1 Parent(s): 851915c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -24,8 +24,8 @@ git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-l
24
  blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
25
  blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
26
 
27
- blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
28
- blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
29
 
30
  blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
31
  blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
@@ -48,7 +48,7 @@ git_model_large_textcaps.to(device)
48
  blip_model_large.to(device)
49
  # vitgpt_model.to(device)
50
  coca_model.to(device)
51
- blip2_model.to(device)
52
 
53
  def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
54
  inputs = processor(images=image, return_tensors="pt").to(device)
@@ -88,15 +88,15 @@ def generate_captions(image):
88
 
89
  caption_coca = generate_caption_coca(coca_model, coca_transform, image)
90
 
91
- caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
92
 
93
  caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
94
 
95
- return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2, caption_blip2_8_bit
96
 
97
 
98
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
99
- outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 2.7b"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
100
 
101
  title = "Interactive demo: comparing image captioning models"
102
  description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
 
24
  blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
25
  blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
26
 
27
+ # blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
28
+ # blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
29
 
30
  blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
31
  blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
 
48
  blip_model_large.to(device)
49
  # vitgpt_model.to(device)
50
  coca_model.to(device)
51
+ # blip2_model.to(device)
52
 
53
  def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
54
  inputs = processor(images=image, return_tensors="pt").to(device)
 
88
 
89
  caption_coca = generate_caption_coca(coca_model, coca_transform, image)
90
 
91
+ # caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
92
 
93
  caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
94
 
95
+ return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2_8_bit
96
 
97
 
98
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
99
+ outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
100
 
101
  title = "Interactive demo: comparing image captioning models"
102
  description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."