import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM, BlipForConditionalGeneration import torch torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') git_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco") git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco") blip_processor = AutoProcessor.from_pretrained("Salesfoce/blip-image-captioning-base") blip_model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base") def generate_caption(processor, model, image): inputs = processor(image=image, return_tensors="pt") generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption def generate_captions(image): caption_git = generate_caption(git_processor, git_model, image) caption_blip = generate_caption(blip_processor, blip_model, image) return caption_git, caption_blip examples = [["cats.jpg"]] title = "Interactive demo: ViLT" description = "Gradio Demo for ViLT (Vision and Language Transformer), fine-tuned on VQAv2, a model that can answer questions from images. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below." article = "
ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision | Github Repo
" interface = gr.Interface(fn=answer_question, inputs=gr.inputs.Image(type="pil"), outputs=[gr.outputs.Textbox(label="Generated caption by GIT"), gr.outputs.Textbox(label="Generated caption by BLIP")], examples=examples, title=title, description=description, article=article, enable_queue=True) interface.launch(debug=True)