Spaces:
Running
Running
File size: 14,173 Bytes
1b58573 b1ae84d d1d64c5 1b58573 b1ae84d 5c69e57 1b58573 8d32a56 d1d64c5 1b58573 db51843 4b081a7 55d0090 f29af1a 70ba502 55d0090 4b081a7 55d0090 4b081a7 55d0090 4b081a7 f56e0f7 b1ae84d 1b58573 d1d64c5 8d32a56 4803c81 8d32a56 4b081a7 fff4a3d d1d64c5 4b081a7 d1d64c5 4b081a7 0cb1e93 4b081a7 0cb1e93 4b081a7 0cb1e93 4b081a7 0cb1e93 4b081a7 0cb1e93 4b081a7 4803c81 0cb1e93 4b081a7 4803c81 4b081a7 0cb1e93 4b081a7 0cb1e93 4218142 0cb1e93 55d0090 afffbea 55d0090 0cb1e93 55d0090 0cb1e93 55d0090 0cb1e93 4b081a7 4803c81 7211311 4803c81 4d5dd00 4803c81 009d05d eaad207 aa480f3 747dd7b 2412826 0fef4c1 4803c81 e652e0d 4803c81 077fa4f 4803c81 60e1ead a192e41 60e1ead 0f18ae6 4803c81 2c9ad3b 4803c81 5dcc322 4803c81 395677b 4803c81 afffbea 0cb1e93 bffc5f3 51ae8ca 0cb1e93 55d0090 0cb1e93 46e0c58 0cb1e93 afffbea 0cb1e93 4803c81 0cb1e93 afffbea 0cb1e93 afffbea 0cb1e93 4803c81 0cb1e93 bfe2156 4803c81 afffbea 4803c81 afffbea dff0e48 0cb1e93 4803c81 0cb1e93 fe45257 0cb1e93 afffbea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import argparse
import os
import gradio as gr
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
from PIL import Image
TITLE = "WaifuDiffusion Tagger"
DESCRIPTION = """
Demo for the WaifuDiffusion tagger models
"""
HF_TOKEN = os.environ.get("HF_TOKEN", "")
# Dataset v3 series of models:
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
VIT_MODEL_DSV3_REPO = "ura23/wd-vit-tagger-v3"
VIT_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-large-tagger-v3"
EVA02_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
# Dataset v2 series of models:
MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
# IdolSankaku series of models:
EVA02_LARGE_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-eva02-large-tagger-v1"
SWINV2_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-swinv2-tagger-v1"
# Files to download from the repos
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--score-slider-step", type=float, default=0.05)
parser.add_argument("--score-general-threshold", type=float, default=0.25)
parser.add_argument("--score-character-threshold", type=float, default=1.0)
return parser.parse_args()
def load_labels(dataframe) -> list[str]:
tag_names = dataframe["name"].tolist()
general_indexes = list(np.where(dataframe["category"] == 0)[0])
character_indexes = list(np.where(dataframe["category"] == 4)[0])
return tag_names, general_indexes, character_indexes
class Predictor:
def __init__(self):
self.model_target_size = None
self.last_loaded_repo = None
def download_model(self, model_repo):
csv_path = huggingface_hub.hf_hub_download(model_repo, LABEL_FILENAME, use_auth_token=HF_TOKEN)
model_path = huggingface_hub.hf_hub_download(model_repo, MODEL_FILENAME, use_auth_token=HF_TOKEN)
return csv_path, model_path
def load_model(self, model_repo):
if model_repo == self.last_loaded_repo:
return
csv_path, model_path = self.download_model(model_repo)
tags_df = pd.read_csv(csv_path)
self.tag_names, self.general_indexes, self.character_indexes = load_labels(tags_df)
model = rt.InferenceSession(model_path)
_, height, width, _ = model.get_inputs()[0].shape
self.model_target_size = height
self.last_loaded_repo = model_repo
self.model = model
def prepare_image(self, image):
# Create a white canvas with the same size as the input image
canvas = Image.new("RGBA", image.size, (255, 255, 255))
# Ensure the input image has an alpha channel for compositing
if image.mode != "RGBA":
image = image.convert("RGBA")
# Composite the input image onto the canvas
canvas.alpha_composite(image)
# Convert to RGB (alpha channel is no longer needed)
image = canvas.convert("RGB")
# Resize the image to a square of size (model_target_size x model_target_size)
max_dim = max(image.size)
padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
pad_left = (max_dim - image.width) // 2
pad_top = (max_dim - image.height) // 2
padded_image.paste(image, (pad_left, pad_top))
padded_image = padded_image.resize((self.model_target_size, self.model_target_size), Image.BICUBIC)
# Convert the image to a NumPy array
image_array = np.asarray(padded_image, dtype=np.float32)[:, :, ::-1]
return np.expand_dims(image_array, axis=0)
def predict(self, images, model_repo, general_thresh, character_thresh):
self.load_model(model_repo)
results = []
for image in images:
image = self.prepare_image(image)
input_name = self.model.get_inputs()[0].name
label_name = self.model.get_outputs()[0].name
preds = self.model.run([label_name], {input_name: image})[0]
labels = list(zip(self.tag_names, preds[0].astype(float)))
general_res = [x[0] for i, x in enumerate(labels) if i in self.general_indexes and x[1] > general_thresh]
character_res = [x[0] for i, x in enumerate(labels) if i in self.character_indexes and x[1] > character_thresh]
results.append((general_res, character_res))
return results
def main():
args = parse_args()
predictor = Predictor()
model_repos = [
SWINV2_MODEL_DSV3_REPO,
CONV_MODEL_DSV3_REPO,
VIT_MODEL_DSV3_REPO,
VIT_LARGE_MODEL_DSV3_REPO,
EVA02_LARGE_MODEL_DSV3_REPO,
# ---
MOAT_MODEL_DSV2_REPO,
SWIN_MODEL_DSV2_REPO,
CONV_MODEL_DSV2_REPO,
CONV2_MODEL_DSV2_REPO,
VIT_MODEL_DSV2_REPO,
# ---
SWINV2_MODEL_IS_DSV1_REPO,
EVA02_LARGE_MODEL_IS_DSV1_REPO,
]
predefined_tags = ["loli",
"oppai_loli",
"2024",
"2023",
"2025",
"head-mounted_display",
"2022",
"muscular_female",
"muscular",
"abs",
"2021",
"peeing",
"pee",
"round_eyewear",
"yellow-framed_eyewear",
"hetero",
"vaginal",
"straddling",
"girl_on_top",
"male_pubic_hair",
"cowgirl_position",
"happy_sex",
"vibrator_under_panties",
"vibrator_in_thighhighs",
"anal_beads",
"butt_plug",
"sex_toy",
"anal",
"object_insertion",
"dildo",
"anal_object_insertion",
"vaginal_object_insertion",
"semi-rimless_eyewear",
"red-framed_eyewear",
"under-rim_eyewear",
"3d_background",
"sample_watermark",
"onee-shota",
"incest",
"furry",
"can",
"drinking_can",
"holding_can",
"twitter_strip_game_(meme)",
"like_and_retweet",
"furry_female",
"realistic",
"egg_vibrator",
"tongue_piercing",
"handheld_game_console",
"game_controller",
"nintendo_switch",
"talking",
"swastika",
"character_name",
"vibrator",
"black-framed_eyewear",
"heterochromia",
"chibi",
"mini_person",
"controller",
"remote_control_vibrator",
"vibrator_under_clothes",
"thank_you",
"vibrator_cord",
"shota",
"cropped_legs",
"cropped_torso",
"traditional_media",
"color_guide",
"photorealistic",
"male_focus",
"black_babydoll",
"signature",
"web_address",
"censored_nipples",
"rhodes_island_logo_(arknights)",
"gothic_lolita",
"glasses",
"reference_inset",
"twitter_logo",
"mother_and_daughter",
"holding_controller",
"holding_game_controller",
"baby",
"heart_censor",
"pixiv_username",
"korean_text",
"pixiv_logo",
"greyscale_with_colored_background",
"water_bottle",
"body_writing",
"used_condom",
"multiple_condoms",
"condom_belt",
"holding_phone",
"multiple_views",
"phone",
"cellphone",
"zoom_layer",
"smartphone",
"lolita_hairband",
"lactation",
"otoko_no_ko",
"minigirl",
"babydoll",
"domino_mask",
"pixiv_id",
"qr_code",
"monochrome",
"trick_or_treat",
"happy_birthday",
"lolita_fashion",
"arrow_(symbol)",
"happy_new_year",
"dated",
"thought_bubble",
"greyscale",
"speech_bubble",
"mask",
"comic",
"bottle",
"holding_bottle",
"milk",
"milk_bottle",
"english_text",
"copyright_name",
"twitter_username",
"fanbox_username",
"patreon_username",
"patreon_logo",
"cover",
"weibo_logo",
"weibo_username",
"signature",
"content_rating",
"cover_page",
"doujin_cover",
"sex",
"artist_name",
"watermark",
"censored",
"bar_censor",
"blank_censor",
"blur_censor",
"light_censor",
"mosaic_censoring"]
with gr.Blocks(title=TITLE) as demo:
gr.Markdown(f"<h1 style='text-align: center;'>{TITLE}</h1>")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
submit = gr.Button(
value="Process Images", variant="primary"
)
image_files = gr.File(
file_types=["image"], label="Upload Images", file_count="multiple",
)
# Wrap the model selection and sliders in an Accordion
with gr.Accordion("Advanced Settings", open=False): # Collapsible by default
model_repo = gr.Dropdown(
model_repos,
value=VIT_MODEL_DSV3_REPO,
label="Select Model",
)
general_thresh = gr.Slider(
0, 1, step=args.score_slider_step, value=args.score_general_threshold, label="General Tags Threshold"
)
character_thresh = gr.Slider(
0, 1, step=args.score_slider_step, value=args.score_character_threshold, label="Character Tags Threshold"
)
filter_tags = gr.Textbox(
value=", ".join(predefined_tags),
label="Filter Tags (comma-separated)",
placeholder="Add tags to filter out (e.g., winter, red, from above)",
lines=9
)
with gr.Column():
output = gr.Textbox(label="Output", lines=10)
def process_images(files, model_repo, general_thresh, character_thresh, filter_tags):
images = [Image.open(file.name) for file in files]
results = predictor.predict(images, model_repo, general_thresh, character_thresh)
# Parse filter tags
filter_set = set(tag.strip().lower() for tag in filter_tags.split(","))
# Generate formatted output
prompts = []
for i, (general_tags, character_tags) in enumerate(results):
# Replace underscores with spaces for both character and general tags
character_part = ", ".join(
tag.replace('_', ' ') for tag in character_tags if tag.lower() not in filter_set
)
general_part = ", ".join(
tag.replace('_', ' ') for tag in general_tags if tag.lower() not in filter_set
)
# Construct the prompt based on the presence of character_part
if character_part:
prompts.append(f"{character_part}, {general_part}")
else:
prompts.append(general_part)
# Join all prompts with blank lines
return "\n\n".join(prompts)
submit.click(
process_images,
inputs=[image_files, model_repo, general_thresh, character_thresh, filter_tags],
outputs=output
)
demo.queue(max_size=10)
demo.launch()
if __name__ == "__main__":
main() |