Spaces:
Runtime error
Runtime error
File size: 39,927 Bytes
2956799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
# -*- coding: utf-8 -*-
"""
Author: Philipp Seidl
ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning
Johannes Kepler University Linz
Contact: [email protected]
Training
"""
from .utils import str2bool, lgamma, multinom_gk, top_k_accuracy
from .data import load_templates, load_dataset_from_csv, load_USPTO
from .model import ModelConfig, MHN, StaticQK, SeglerBaseline, Retrosim
from .molutils import convert_smiles_to_fp, FP_featurizer, smarts2appl, getTemplateFingerprint, disable_rdkit_logging
from collections import defaultdict
import argparse
import os
import numpy as np
import pandas as pd
import datetime
import sys
from time import time
import matplotlib.pyplot as plt
import torch
import multiprocessing
import warnings
from joblib import Memory
cachedir = 'data/cache/'
memory = Memory(cachedir, verbose=0, bytes_limit=80e9)
def parse_args():
parser = argparse.ArgumentParser(description="Train MHNreact.",
epilog="--", prog="Train")
parser.add_argument('-f', type=str)
parser.add_argument('--model_type', type=str, default='mhn',
help="Model-type: choose from 'segler', 'fortunato', 'mhn' or 'staticQK', default:'mhn'")
parser.add_argument("--exp_name", type=str, default='', help="experiment name, (added as postfix to the file-names)")
parser.add_argument("-d", "--dataset_type", type=str, default='sm',
help="Input Dataset 'sm' for Scheider-USPTO-50k 'lg' for USPTO large or 'golden' or use keyword '--csv_path to specify an input file', default: 'sm'")
parser.add_argument("--csv_path", default=None, type=str, help="path to preprocessed trainings file + split columns, default: None")
parser.add_argument("--split_col", default='split', type=str, help="split column of csv, default: 'split'")
parser.add_argument("--input_col", default='prod_smiles', type=str, help="input column of csv, default: 'pro_smiles'")
parser.add_argument("--reactants_col", default='reactants_can', type=str, help="reactant colum of csv, default: 'reactants_can'")
parser.add_argument("--fp_type", type=str, default='morganc',
help="Fingerprint type for the input only!: default: 'morgan', other options: 'rdk', 'ECFP', 'ECFC', 'MxFP', 'Morgan2CBF' or a combination of fingerprints with '+'' for max-pooling and '&' for concatination e.g. maccs+morganc+topologicaltorsion+erg+atompair+pattern+rdkc+layered+mhfp, default: 'morganc'")
parser.add_argument("--template_fp_type", type=str, default='rdk',
help="Fingerprint type for the template fingerprint, default: 'rdk'")
parser.add_argument("--device", type=str, default='best',
help="Device to run the model on, preferably 'cuda:0', default: 'best' (takes the gpu with most RAM)")
parser.add_argument("--fp_size", type=int, default=4096,
help="fingerprint-size used for templates as well as for inputs, default: 4096")
parser.add_argument("--fp_radius", type=int, default=2, help="fingerprint-radius (if applicable to the fingerprint-type), default: 2")
parser.add_argument("--epochs", type=int, default=10, help='number of epochs, default: 10')
parser.add_argument("--pretrain_epochs", type=int, default=0,
help="applicability-matrix pretraining epochs if applicable (e.g. fortunato model_type), default: 0")
parser.add_argument("--save_model", type=str2bool, default=False, help="save the model, default: False")
parser.add_argument("--dropout", type=float, default=0.2, help="dropout rate for encoders, default: 0.2")
parser.add_argument("--lr", type=float, default=5e-4, help="learning-rate, dfeault: 5e-4")
parser.add_argument("--hopf_beta", type=float, default=0.05, help="hopfield beta parameter, default: 0.125")
parser.add_argument("--hopf_asso_dim", type=int, default=512, help="association dimension, default: 512")
parser.add_argument("--hopf_num_heads", type=int, default=1, help="hopfield number of heads, default: 1")
parser.add_argument("--hopf_association_activation", type=str, default='None',
help="hopfield association activation function recommended:'Tanh' or 'None', other: 'ReLU', 'SeLU', 'GeLU', or 'None' for more, see torch.nn, default: 'None'")
parser.add_argument("--norm_input", default=True, type=str2bool,
help="input-normalization, default: True")
parser.add_argument("--norm_asso", default=True, type=str2bool,
help="association-normalization, default: True")
# additional experimental hyperparams
parser.add_argument("--hopf_n_layers", default=1, type=int, help="Number of hopfield-layers, default: 1")
parser.add_argument("--mol_encoder_layers", default=1, type=int, help="Number of molecule-encoder layers, default: 1")
parser.add_argument("--temp_encoder_layers", default=1, type=int, help="Number of template-encoder layers, default: 1")
parser.add_argument("--encoder_af", default='ReLU', type=str,
help="Encoder-NN intermediate activation function (before association_activation function), default: 'ReLU'")
parser.add_argument("--hopf_pooling_operation_head", default='mean', type=str, help="Pooling operation over heads default=max, (max, min, mean, ...), default: 'mean'")
parser.add_argument("--splitting_scheme", default=None, type=str, help="Splitting_scheme for non-csv-input, default: None, other options: 'class-freq', 'random'")
parser.add_argument("--concat_rand_template_thresh", default=-1, type=int, help="Concatinates a random vector to the tempalte-fingerprint at all templates with num_training samples > this threshold; -1 (default) means deactivated")
parser.add_argument("--repl_quotient", default=10, type=float, help="Only if --concat_rand_template_thresh >= 0 - Quotient of how much should be replaced by random in template-embedding, (default: 10)")
parser.add_argument("--verbose", default=False, type=str2bool, help="If verbose, will print out more stuff, default: False")
parser.add_argument("--batch_size", default=128, type=int, help="Training batch-size, default: 128")
parser.add_argument("--eval_every_n_epochs", default=1, type=int, help="Evaluate every _ epochs (Evaluation is costly for USPTO-Lg), default: 1")
parser.add_argument("--save_preds", default=False, type=str2bool, help="Save predictions for test split at the end of training, default: False")
parser.add_argument("--wandb", default=False, type=str2bool, help="Save to wandb; login required, default: False")
parser.add_argument("--seed", default=None, type=int, help="Seed your run to make it reproducible, defualt: None")
parser.add_argument("--template_fp_type2", default=None, type=str, help="experimental template_fp_type for layer 2, default: None")
parser.add_argument("--layer2weight",default=0.2, type=float, help="hopf-layer2 weight of p, default: 0.2")
parser.add_argument("--reactant_pooling", default='max', type=str, help="reactant pooling operation over template-fingerprint, default: 'max', options: 'min','mean','lgamma'")
parser.add_argument("--ssretroeval", default=False, type=str2bool, help="single-step retro-synthesis eval, default: False")
parser.add_argument("--addval2train", default=False, type=str2bool, help="adds the validation set to the training set, default: False")
parser.add_argument("--njobs",default=-1, type=int, help="Number of jobs, default: -1 -> uses all available")
parser.add_argument("--eval_only_loss", default=False, type=str2bool, help="if only loss should be evaluated (if top-k acc may be time consuming), default: False")
parser.add_argument("--only_templates_in_batch", default=False, type=str2bool, help="while training only forwards templates that are in the batch, default: False")
parser.add_argument("--plot_res", default=False, type=str2bool, help="Plotting results for USPTO-sm/lg, default: False")
args = parser.parse_args()
if args.njobs ==-1:
args.njobs = int(multiprocessing.cpu_count())
if args.device=='best':
from .utils import get_best_gpu
try:
args.device = get_best_gpu()
except:
print('couldnt get the best gpu, using cpu instead')
args.device = 'cpu'
# some save checks on model type
if (args.model_type == 'segler') & (args.pretrain_epochs>=1):
print('changing model type to fortunato because of pretraining_epochs>0')
args.model_type = 'fortunato'
if ((args.model_type == 'staticQK') or (args.model_type == 'retrosim')) & (args.epochs>1):
print('changing epochs to 1 (StaticQK is not lernable ;)')
args.epochs=1
if args.template_fp_type != args.fp_type:
print('fp_type must be the same as template_fp_type --> setting template_fp_type to fp_type')
args.template_fp_type = args.fp_type
if args.save_model & (args.fp_type=='MxFP'):
warnings.warn('Currently MxFP is not recommended for saving the model paprameter (fragment dict for others would need to be saved or compued again, currently not implemented)')
return args
@memory.cache(ignore=['njobs'])
def featurize_smiles(X, fp_type='morgan', fp_size=4096, fp_radius=2, njobs=1, verbose=False):
X_fp = {}
if fp_type in ['MxFP','MACCS','Morgan2CBF','Morgan4CBF', 'Morgan6CBF', 'ErG','AtomPair','TopologicalTorsion','RDK']:
print('computing', fp_type)
if fp_type == 'MxFP':
fp_types = ['MACCS','Morgan2CBF','Morgan4CBF', 'Morgan6CBF', 'ErG','AtomPair','TopologicalTorsion','RDK']
else:
fp_types = [fp_type]
remaining = int(fp_size)
for fp_type in fp_types:
print(fp_type,end=' ')
feat = FP_featurizer(fp_types=fp_type,
max_features= (fp_size//len(fp_types)) if (fp_type != fp_types[-1]) else remaining )
X_fp[f'train_{fp_type}'] = feat.fit(X['train'])
X_fp[f'valid_{fp_type}'] = feat.transform(X['valid'])
X_fp[f'test_{fp_type}'] = feat.transform(X['test'])
remaining -= X_fp[f'train_{fp_type}'].shape[1]
#X_fp['train'].shape, X_fp['test'].shape
X_fp['train'] = np.hstack([ X_fp[f'train_{fp_type}'] for fp_type in fp_types])
X_fp['valid'] = np.hstack([ X_fp[f'valid_{fp_type}'] for fp_type in fp_types])
X_fp['test'] = np.hstack([ X_fp[f'test_{fp_type}'] for fp_type in fp_types])
else: #fp_type in ['rdk','morgan','ecfp4','pattern','morganc','rdkc']:
if verbose: print('computing', fp_type, 'folded')
for split in X.keys():
X_fp[split] = convert_smiles_to_fp(X[split], fp_size=fp_size, which=fp_type, radius=fp_radius, njobs=njobs, verbose=verbose)
return X_fp
def compute_template_fp(fp_len=2048, reactant_pooling='max', do_log=True):
"""Pre-Compute the template-fingerprint"""
# combine them to one fingerprint
comb_template_fp = np.zeros((max(template_list.keys())+1,fp_len if reactant_pooling!='concat' else fp_len*6))
for i in template_list:
tpl = template_list[i]
try:
pr, rea = str(tpl).split('>>')
idxx = temp_part_to_fp[pr]
prod_fp = templates_fp['fp'][idxx]
except:
print('err', pr, end='\r')
prod_fp = np.zeros(fp_len)
rea_fp = templates_fp['fp'][[temp_part_to_fp[r] for r in str(rea).split('.')]] # max-pooling
if reactant_pooling=='only_product':
rea_fp = np.zeros(fp_len)
if reactant_pooling=='max':
rea_fp = np.log(1 + rea_fp.max(0))
elif reactant_pooling=='mean':
rea_fp = np.log(1 + rea_fp.mean(0))
elif reactant_pooling=='sum':
rea_fp = np.log(1 + rea_fp.mean(0))
elif reactant_pooling=='lgamma':
rea_fp = multinom_gk(rea_fp, axis=0)
elif reactant_pooling=='concat':
rs = str(rea).split('.')
rs.sort()
for ii, r in enumerate(rs):
idx = temp_part_to_fp[r]
rea_fp = templates_fp['fp'][idx]
comb_template_fp[i, (fp_len*(ii+1)):(fp_len*(ii+2))] = np.log(1 + rea_fp)
comb_template_fp[i,:prod_fp.shape[0]] = np.log(1 + prod_fp) #- rea_fp*0.5
if reactant_pooling!='concat':
#comb_template_fp[i] = multinom_gk(np.stack([np.log(1+prod_fp), rea_fp]))
#comb_template_fp[i,fp_len:] = rea_fp
comb_template_fp[i,:rea_fp.shape[0]] = comb_template_fp[i, :rea_fp.shape[0]] - rea_fp*0.5
return comb_template_fp
def set_up_model(args, template_list=None):
hpn_config = ModelConfig(num_templates = int(max(template_list.keys()))+1,
#len(template_list.values()), #env.num_templates, #
dropout=args.dropout,
fingerprint_type=args.fp_type,
template_fp_type = args.template_fp_type,
fp_size = args.fp_size,
fp_radius= args.fp_radius,
device=args.device,
lr=args.lr,
hopf_beta=args.hopf_beta, #1/(128**0.5),#1/(2048**0.5),
hopf_input_size=args.fp_size,
hopf_output_size=None,
hopf_num_heads=args.hopf_num_heads,
hopf_asso_dim=args.hopf_asso_dim,
hopf_association_activation = args.hopf_association_activation, #or ReLU, Tanh works better, SELU, GELU
norm_input = args.norm_input,
norm_asso = args.norm_asso,
hopf_n_layers= args.hopf_n_layers,
mol_encoder_layers=args.mol_encoder_layers,
temp_encoder_layers=args.temp_encoder_layers,
encoder_af=args.encoder_af,
hopf_pooling_operation_head = args.hopf_pooling_operation_head,
batch_size=args.batch_size,
)
print(hpn_config.__dict__)
if args.model_type=='segler': # baseline
clf = SeglerBaseline(hpn_config)
elif args.model_type=='mhn':
clf = MHN(hpn_config, layer2weight=args.layer2weight)
elif args.model_type=='fortunato': # pretraining with applicability-matrix
clf = SeglerBaseline(hpn_config)
elif args.model_type=='staticQK': # staticQK
clf = StaticQK(hpn_config)
elif args.model_type=='retrosim': # staticQK
clf = Retrosim(hpn_config)
else:
raise NotImplementedError
return clf, hpn_config
def set_up_template_encoder(args, clf, label_to_n_train_samples=None, template_list=None):
if isinstance(clf, SeglerBaseline):
clf.templates = []
elif args.model_type=='staticQK':
clf.template_list = list(template_list.values())
clf.update_template_embedding(which=args.template_fp_type, fp_size=args.fp_size, radius=args.fp_radius, njobs=args.njobs)
elif args.model_type=='retrosim':
#clf.template_list = list(X['train'].values())
clf.fit_with_train(X_fp['train'], y['train'])
else:
import hashlib
PATH = './data/cache/'
if not os.path.exists(PATH):
os.mkdir(PATH)
fn_templ_emb = f'{PATH}templ_emb_{args.fp_size}_{args.template_fp_type}{args.fp_radius}_{len(template_list)}_{int(hashlib.sha512((str(template_list)).encode()).hexdigest(), 16)}.npy'
if (os.path.exists(fn_templ_emb)): # load the template embedding
print(f'loading tfp from file {fn_templ_emb}')
templ_emb = np.load(fn_templ_emb)
# !!! beware of different fingerprint types
clf.template_list = list(template_list.values())
if args.only_templates_in_batch:
clf.templates_np = templ_emb
clf.templates = None
else:
clf.templates = torch.from_numpy(templ_emb).float().to(clf.config.device)
else:
if args.template_fp_type=='MxFP':
clf.template_list = list(template_list.values())
clf.templates = torch.from_numpy(comb_template_fp).float().to(clf.config.device)
clf.set_templates_recursively()
elif args.template_fp_type=='Tfidf':
clf.template_list = list(template_list.values())
clf.templates = torch.from_numpy(tfidf_template_fp).float().to(clf.config.device)
clf.set_templates_recursively()
elif args.template_fp_type=='random':
clf.template_list = list(template_list.values())
clf.templates = torch.from_numpy(np.random.rand(len(template_list),args.fp_size)).float().to(clf.config.device)
clf.set_templates_recursively()
else:
clf.set_templates(list(template_list.values()), which=args.template_fp_type, fp_size=args.fp_size,
radius=args.fp_radius, learnable=False, njobs=args.njobs, only_templates_in_batch=args.only_templates_in_batch)
#if len(template_list)<100000:
np.save(fn_templ_emb, clf.templates_np if args.only_templates_in_batch else clf.templates.detach().cpu().numpy().astype(np.float16))
# concatinate the current fingerprint with a random fingerprint if the threshold is above
if (args.concat_rand_template_thresh != -1) & (args.repl_quotient>0):
REPLACE_FACTOR = int(args.repl_quotient) # default was 8
# fold the original fingerprint
pre_comp_templates = clf.templates_np if args.only_templates_in_batch else clf.templates.detach().cpu().numpy()
# mask of labels with mor than 49 training samples
l_mask = np.array([label_to_n_train_samples[k]>=args.concat_rand_template_thresh for k in template_list])
print(f'Num of templates with added rand-vect of size {pre_comp_templates.shape[1]//REPLACE_FACTOR} due to >=thresh ({args.concat_rand_template_thresh}):',l_mask.sum())
# remove the bits with the lowest variance
v = pre_comp_templates.var(0)
idx_lowest_var_half = v.argsort()[:(pre_comp_templates.shape[1]//REPLACE_FACTOR)]
# the new zero-init-vectors
pre = np.zeros([pre_comp_templates.shape[0], pre_comp_templates.shape[1]//REPLACE_FACTOR]).astype(np.float)
print(pre.shape, l_mask.shape, l_mask.sum()) #(616, 1700) (11790,) 519
print(pre_comp_templates.shape, len(template_list)) #(616, 17000) 616
# only the ones with >thresh will receive a random vect
pre[l_mask] = np.random.rand(l_mask.sum(), pre.shape[1])
pre_comp_templates[:,idx_lowest_var_half] = pre
#clf.templates = torch.from_numpy(pre_comp_templates).float().to(clf.config.device)
if pre_comp_templates.shape[0]<100000:
print('adding template_matrix to params')
param = torch.nn.Parameter(torch.from_numpy(pre_comp_templates).float(), requires_grad=False)
clf.register_parameter(name='templates+noise', param=param)
clf.templates = param.to(clf.config.device)
clf.set_templates_recursively()
else: #otherwise might cause memory issues
print('more than 100k templates')
if args.only_templates_in_batch:
clf.templates = None
clf.templates_np = pre_comp_templates
else:
clf.templates = torch.from_numpy(pre_comp_templates).float()
clf.set_templates_recursively()
# set's this for the first layer!!
if args.template_fp_type2=='MxFP':
print('first_layer template_fingerprint is set to MxFP')
clf.templates = torch.from_numpy(comb_template_fp).float().to(clf.config.device)
elif args.template_fp_type2=='Tfidf':
print('first_layer template_fingerprint is set to Tfidf')
clf.templates = torch.from_numpy(tfidf_template_fp).float().to(clf.config.device)
elif args.template_fp_type2=='random':
print('first_layer template_fingerprint is set to random')
clf.templates = torch.from_numpy(np.random.rand(len(template_list),args.fp_size)).float().to(clf.config.device)
elif args.template_fp_type2=='stfp':
print('first_layer template_fingerprint is set to stfp ! only works with 4096 fp_size')
tfp = getTemplateFingerprint(list(template_list.values()))
clf.templates = torch.from_numpy(tfp).float().to(clf.config.device)
return clf
if __name__ == '__main__':
args = parse_args()
run_id = str(time()).split('.')[0]
fn_postfix = str(args.exp_name) + '_' + run_id
if args.wandb:
import wandb
wandb.init(project='mhn-react', entity='phseidl', name=args.dataset_type+'_'+args.model_type+'_'+fn_postfix, config=args.__dict__)
else:
wandb=None
if not args.verbose:
disable_rdkit_logging()
if args.seed is not None:
from .utils import seed_everything
seed_everything(args.seed)
print('seeded with',args.seed)
# load csv or data
if args.csv_path is None:
X, y = load_USPTO(which=args.dataset_type)
template_list = load_templates(which=args.dataset_type)
else:
X, y, template_list, test_reactants_can = load_dataset_from_csv(**vars(args))
if args.addval2train:
print('adding val to train')
X['train'] = [*X['train'],*X['valid']]
y['train'] = np.concatenate([y['train'],y['valid']])
splits = ['train', 'valid', 'test']
#TODO split up in seperate class
if args.splitting_scheme == 'class-freq':
X_all = np.concatenate([X[split] for split in splits], axis=0)
y_all = np.concatenate([y[split] for split in splits])
# sort class by frequency / assumes class-index is ordered (wich is mildely violated)
res = y_all.argsort()
# use same split proportions
cum_split_lens = np.cumsum([len(y[split]) for split in splits]) #cumulative split length
X['train'] = X_all[res[0:cum_split_lens[0]]]
y['train'] = y_all[res[0:cum_split_lens[0]]]
X['valid'] = X_all[res[cum_split_lens[0]:cum_split_lens[1]]]
y['valid'] = y_all[res[cum_split_lens[0]:cum_split_lens[1]]]
X['test'] = X_all[res[cum_split_lens[1]:]]
y['test'] = y_all[res[cum_split_lens[1]:]]
for split in splits:
print(split, y[split].shape[0], 'samples (', y[split].max(),'max label)')
if args.splitting_scheme == 'remove_once_in_train_and_not_in_test':
print('remove_once_in_train')
from collections import Counter
cc = Counter()
cc.update(y['train'])
classes_set_only_once_in_train = set(np.array(list(cc.keys()))[ (np.array(list(cc.values())))==1])
not_in_test = set(y['train']).union(y['valid']) - (set(y['test']))
classes_set_only_once_in_train = (classes_set_only_once_in_train.intersection(not_in_test))
remove_those_mask = np.array([yii in classes_set_only_once_in_train for yii in y['train']])
X['train'] = np.array(X['train'])[~remove_those_mask]
y['train'] = np.array(y['train'])[~remove_those_mask]
print(remove_those_mask.mean(),'%', remove_those_mask.sum(), 'samples removed')
if args.splitting_scheme == 'random':
print('random-splitting-scheme:8-1-1')
if args.ssretroeval:
print('ssretroeval not available')
raise NotImplementedError
import numpy as np
from sklearn.model_selection import train_test_split
def _unpack(lod):
r = []
for k,v in lod.items():
[r.append(i) for i in v]
return r
X_all = _unpack(X)
y_all = np.array( _unpack(y) )
X['train'], X['test'], y['train'], y['test'] = train_test_split(X_all, y_all, test_size=0.2, random_state=70135)
X['test'], X['valid'], y['test'], y['valid'] = train_test_split(X['test'], y['test'], test_size=0.5, random_state=70135)
zero_shot = set(y['test']).difference( set(y['train']).union(set(y['valid'])) )
zero_shot_mask = np.array([yi in zero_shot for yi in y['test']])
print(sum(zero_shot_mask))
#y['test'][zero_shot_mask] = list(zero_shot)[0] #not right but quick
if args.model_type=='staticQK' or args.model_type=='retrosim':
print('staticQK model: caution: use pattern, or rdk -fingerprint-embedding')
fp_size = args.fp_size
radius = args.fp_radius #quite important ;)
fp_embedding = args.fp_type
X_fp = featurize_smiles(X, fp_type=args.fp_type, fp_size=args.fp_size, fp_radius=args.fp_radius, njobs=args.njobs)
if args.template_fp_type=='MxFP' or (args.template_fp_type2=='MxFP'):
temp_part_to_fp = {}
for i in template_list:
tpl = template_list[i]
for part in str(tpl).split('>>'):
for p in str(part).split('.'):
temp_part_to_fp[p]=None
for i, k in enumerate(temp_part_to_fp):
temp_part_to_fp[k] = i
fp_types = ['Morgan2CBF','Morgan4CBF', 'Morgan6CBF','AtomPair','TopologicalTorsion', 'Pattern', 'RDK']
#MACCS ErG don't work --> errors with explicit / inplicit valence
templates_fp = {}
remaining = args.fp_size
for fp_type in fp_types:
#print(fp_type, end='\t')
# if it's that last use up the remaining fps
te_feat = FP_featurizer(fp_types=fp_type,
max_features=(args.fp_size//len(fp_types)) if (fp_type != fp_types[-1]) else remaining,
log_scale=False
)
templates_fp[fp_type] = te_feat.fit(list(temp_part_to_fp.keys())[:], is_smarts=True)
#print(np.unique(templates_fp[fp_type]), end='\r')
remaining -= templates_fp[fp_type].shape[1]
templates_fp['fp'] = np.hstack([ templates_fp[f'{fp_type}'] for fp_type in fp_types])
if args.template_fp_type=='MxFP' or (args.template_fp_type2=='MxFP'):
comb_template_fp = compute_template_fp(fp_len= args.fp_size, reactant_pooling=args.reactant_pooling)
if args.template_fp_type=='Tfidf' or (args.template_fp_type2 == 'Tfidf'):
print('using tfidf template-fingerprint')
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = (list(template_list.values()))
vectorizer = TfidfVectorizer(analyzer='char', ngram_range=(1,12), max_features=args.fp_size)
tfidf_template_fp = vectorizer.fit_transform(corpus).toarray()
tfidf_template_fp.shape
acutal_fp_size = X_fp['train'].shape[1]
if acutal_fp_size != args.fp_size:
args.fp_size = int(X_fp['train'].shape[1])
print('Warning: fp-size has changed to', acutal_fp_size)
label_to_n_train_samples = {}
n_train_samples_to_label = defaultdict(list)
n_templates = max(template_list.keys())+1 #max(max(y['train']), max(y['test']), max(y['valid']))
for i in range(n_templates):
n_train_samples = (y['train']==i).sum()
label_to_n_train_samples[i] = n_train_samples
n_train_samples_to_label[n_train_samples].append(i)
up_to = 11
n_samples = []
masks = []
ntes = range(up_to)
mask_dict = {}
for nte in ntes: # Number of training examples
split = f'nte_{nte}'
#print(split)
mask = np.zeros(y['test'].shape)
if isinstance(nte, int):
for label_with_nte in n_train_samples_to_label[nte]:
mask += (y['test'] == label_with_nte)
mask = mask>=1
masks.append(mask)
mask_dict[str(nte)] = mask
n_samples.append(mask.sum())
# for greater than 10 # >10
n_samples.append((np.array(masks).max(0)==0).sum())
mask_dict['>10'] = (np.array(masks).max(0)==0)
sum(n_samples), mask.shape
ntes = range(50) #to 49
for nte in ntes: # Number of training examples
split = f'nte_{nte}'
#print(split)
mask = np.zeros(y['test'].shape)
for label_with_nte in n_train_samples_to_label[nte]:
mask += (y['test'] == label_with_nte)
mask = mask>=1
masks.append(mask)
# for greater than 10 # >49
n_samples.append((np.array(masks).max(0)==0).sum())
mask_dict['>49'] = np.array(masks).max(0)==0
print(n_samples)
clf, hpn_config = set_up_model(args, template_list=template_list)
clf = set_up_template_encoder(args, clf, label_to_n_train_samples=label_to_n_train_samples, template_list=template_list)
if args.verbose:
print(clf.config.__dict__)
print(clf)
wda = torch.optim.AdamW(clf.parameters(), lr=args.lr, weight_decay=1e-2)
if args.wandb:
wandb.watch(clf)
# pretraining with applicablity matrix, if applicable
if args.model_type == 'fortunato' or args.pretrain_epochs>1:
print('pretraining on applicability-matrix -- loading the matrix')
_, y_appl = load_USPTO(args.dataset_type, is_appl_matrix=True)
if args.splitting_scheme == 'remove_once_in_train_and_not_in_test':
y_appl['train'] = y_appl['train'][~remove_those_mask]
# check random if the applicability is true for y
splt = 'train'
for i in range(500):
i = np.random.randint(len(y[splt]))
#assert ( y_appl[splt][i].indices == y[splt][i] ).sum()==1
print('pre-training (BCE-loss)')
for epoch in range(args.pretrain_epochs):
clf.train_from_np(X_fp['train'], X_fp['train'], y_appl['train'], use_dataloader=True, is_smiles=False,
epochs=1, wandb=wandb, verbose=args.verbose, bs=args.batch_size,
permute_batches=True, shuffle=True, optimizer=wda,
only_templates_in_batch=args.only_templates_in_batch)
y_pred = clf.evaluate(X_fp['valid'], X_fp['valid'], y_appl['valid'],
split='pretrain_valid', is_smiles=False, only_loss=True,
bs=args.batch_size,wandb=wandb)
appl_acc = ((y_appl['valid'].toarray()) == (y_pred>0.5)).mean()
print(f'{epoch:2.0f} -- train_loss: {clf.hist["loss"][-1]:1.3f}, loss_valid: {clf.hist["loss_pretrain_valid"][-1]:1.3f}, train_acc: {appl_acc:1.5f}')
fn_hist = None
y_preds = None
for epoch in range(round(args.epochs / args.eval_every_n_epochs)):
if not isinstance(clf, StaticQK):
now = time()
clf.train_from_np(X_fp['train'], X_fp['train'], y['train'], use_dataloader=True, is_smiles=False,
epochs=args.eval_every_n_epochs, wandb=wandb, verbose=args.verbose, bs=args.batch_size,
permute_batches=True, shuffle=True, optimizer=wda, only_templates_in_batch=args.only_templates_in_batch)
if args.verbose: print(f'training took {(time()-now)/60:3.1f} min for {args.eval_every_n_epochs} epochs')
for split in ['valid', 'test']:
print(split, 'evaluating', end='\r')
now = time()
#only_loss = ((epoch%5)==4) if args.dataset_type=='lg' else True
y_preds = clf.evaluate(X_fp[split], X_fp[split], y[split], is_smiles=False, split=split, bs=args.batch_size, only_loss=args.eval_only_loss, wandb=wandb);
if args.verbose: print(f'eval {split} took',(time()-now)/60,'min')
if not isinstance(clf, StaticQK):
try:
print(f'{epoch:2.0f} -- train_loss: {clf.hist["loss"][-1]:1.3f}, loss_valid: {clf.hist["loss_valid"][-1]:1.3f}, val_t1acc: {clf.hist["t1_acc_valid"][-1]:1.3f}, val_t100acc: {clf.hist["t100_acc_valid"][-1]:1.3f}')
except:
pass
now = time()
ks = [1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100]
for nte in mask_dict: # Number of training examples
split = f'nte_{nte}'
#print(split)
mask = mask_dict[nte]
topkacc = top_k_accuracy(np.array(y['test'])[mask], y_preds[mask, :], k=ks, ret_arocc=False)
new_hist = {}
for k, tkacc in zip(ks, topkacc):
new_hist[f't{k}_acc_{split}'] = tkacc
#new_hist[(f'arocc_{split}')] = (arocc)
new_hist[f'steps_{split}'] = (clf.steps)
for k in new_hist:
clf.hist[k].append(new_hist[k])
if args.verbose: print(f'eval nte-test took',(time()-now)/60,'min')
fn_hist = clf.save_hist(prefix=f'USTPO_{args.dataset_type}_{args.model_type}_', postfix=fn_postfix)
if args.save_preds:
PATH = './data/preds/'
if not os.path.exists(PATH):
os.mkdir(PATH)
pred_fn = f'{PATH}USPTO_{args.dataset_type}_test_{args.model_type}_{fn_postfix}.npy'
print('saving predictions to',pred_fn)
np.save(pred_fn,y_preds)
args.save_preds = pred_fn
if args.save_model:
model_save_path = clf.save_model(prefix=f'USPTO_{args.dataset_type}_{args.model_type}_valloss{clf.hist.get("loss_valid",[-1])[-1]:1.3f}_',name_as_conf=False, postfix=fn_postfix)
# Serialize data into file:
import json
json.dump( args.__dict__, open( f"data/model/{fn_postfix}_args.json", 'w' ) )
json.dump( hpn_config.__dict__,
open( f"data/model/{fn_postfix}_config.json", 'w' ) )
print('model saved to', model_save_path)
print(min(clf.hist.get('loss_valid',[-1])))
if args.plot_res:
from plotutils import plot_topk, plot_nte
plt.figure()
clf.plot_loss()
plt.draw()
plt.figure()
plot_topk(clf.hist, sets=['valid'])
if args.dataset_type=='sm':
baseline_val_res = {1:0.4061, 10:0.6827, 50: 0.7883, 100:0.8400}
plt.plot(list(baseline_val_res.keys()), list(baseline_val_res.values()), 'k.--')
plt.draw()
plt.figure()
best_cpt = np.array(clf.hist['loss_valid'])[::-1].argmin()+1
print(best_cpt)
try:
best_cpt = np.array(clf.hist['t10_acc_valid'])[::-1].argmax()+1
print(best_cpt)
except:
print('err with t10_acc_valid')
plot_nte(clf.hist, dataset=args.dataset_type.capitalize(), last_cpt=best_cpt, include_bar=True, model_legend=args.exp_name,
n_samples=n_samples, z=1.96)
if os.path.exists('data/figs/'):
try:
os.mkdir(f'data/figs/{args.exp_name}/')
except:
pass
plt.savefig(f'data/figs/{args.exp_name}/training_examples_vs_top100_acc_{args.dataset_type}_{hash(str(args))}.pdf')
plt.draw()
fn_hist = clf.save_hist(prefix=f'USTPO_{args.dataset_type}_{args.model_type}_', postfix=fn_postfix)
if args.ssretroeval:
print('testing on the real test set ;)')
from .data import load_templates
from .retroeval import run_templates, topkaccuracy
from .utils import sort_by_template_and_flatten
a = list(template_list.keys())
#assert list(range(len(a))) == a
templates = list(template_list.values())
#templates = [*templates, *expert_templates]
template_product_smarts = [str(s).split('>')[0] for s in templates]
#execute all template
print('execute all templates')
test_product_smarts = [xi[0] for xi in X['test']] #added later
smarts2appl = memory.cache(smarts2appl, ignore=['njobs','nsplits', 'use_tqdm'])
appl = smarts2appl(test_product_smarts, template_product_smarts, njobs=args.njobs)
n_pairs = len(test_product_smarts) * len(template_product_smarts)
n_appl = len(appl[0])
print(n_pairs, n_appl, n_appl/n_pairs)
#forward
split = 'test'
print('len(X_fp[test]):',len(X_fp[split]))
y[split] = np.zeros(len(X[split])).astype(np.int)
clf.eval()
if y_preds is None:
y_preds = clf.evaluate(X_fp[split], X_fp[split], y[split], is_smiles=False,
split='ttest', bs=args.batch_size, only_loss=True, wandb=None);
template_scores = y_preds #this should allready be test
####
if y_preds.shape[1]>100000:
kth = 200
print(f'only evaluating top {kth} applicable predicted templates')
# only take top kth and multiply by applicability matrix
appl_mtrx = np.zeros_like(y_preds, dtype=bool)
appl_mtrx[appl[0], appl[1]] = 1
appl_and_topkth = ([], [])
for row in range(len(y_preds)):
argpreds = (np.argpartition(-(y_preds[row]*appl_mtrx[row]), kth, axis=0)[:kth])
# if there are less than kth applicable
mask = appl_mtrx[row][argpreds]
argpreds = argpreds[mask]
#if len(argpreds)!=kth:
# print('changed to ', len(argpreds))
appl_and_topkth[0].extend([row for _ in range(len(argpreds))])
appl_and_topkth[1].extend(list(argpreds))
appl = appl_and_topkth
####
print('running the templates')
run_templates = run_templates #memory.cache( ) ... allready cached to tmp
prod_idx_reactants, prod_temp_reactants = run_templates(test_product_smarts, templates, appl, njobs=args.njobs)
#sorted_results = sort_by_template(template_scores, prod_idx_reactants)
#flat_results = flatten_per_product(sorted_results, remove_duplicates=True)
#now aglomerates over same outcome
flat_results = sort_by_template_and_flatten(y_preds, prod_idx_reactants, agglo_fun=sum)
accs = topkaccuracy(test_reactants_can, flat_results, [*list(range(1,101)), 100000])
mtrcs2 = {f't{k}acc_ttest':accs[k-1] for k in [1,2,3,5,10,20,50,100,101]}
if wandb:
wandb.log(mtrcs2)
print('Single-step retrosynthesis-evaluation, results on ttest:')
#print([k[:-6]+'|' for k in mtrcs2.keys()])
[print(k[:-6],end='\t') for k in mtrcs2.keys()]
print()
for k,v in mtrcs2.items():
print(f'{v*100:2.2f}',end='\t')
# save the history of this experiment
EXP_DIR = 'data/experiments/'
df = pd.DataFrame([args.__dict__])
df['min_loss_valid'] = min(clf.hist.get('loss_valid', [-1]))
df['min_loss_train'] = 0 if ((args.model_type=='staticQK') or (args.model_type=='retrosim')) else min(clf.hist.get('loss',[-1]))
try:
df['max_t1_acc_valid'] = max(clf.hist.get('t1_acc_valid', [0]))
df['max_t100_acc_valid'] = max(clf.hist.get('t100_acc_valid', [0]))
except:
pass
df['hist'] = [clf.hist]
df['n_samples'] = [n_samples]
df['fn_hist'] = fn_hist if fn_hist else None
df['fn_model'] = '' if not args.save_model else model_save_path
df['date'] = str(datetime.datetime.fromtimestamp(time()))
df['cmd'] = ' '.join(sys.argv[:])
if not os.path.exists(EXP_DIR):
os.mkdir(EXP_DIR)
df.to_csv(f'{EXP_DIR}{run_id}.tsv', sep='\t')
df
|