MHN-React / mhnreact /retroeval.py
uragankatrrin's picture
Upload 12 files
2956799
# -*- coding: utf-8 -*-
"""
Author: Philipp Seidl, Philipp Renz
ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning
Johannes Kepler University Linz
Contact: [email protected]
Evaluation functions for single-step-retrosynthesis
"""
import sys
import rdchiral
from rdchiral.main import rdchiralRun, rdchiralReaction, rdchiralReactants
import hashlib
from rdkit import Chem
import torch
import numpy as np
import pandas as pd
from collections import defaultdict
from copy import deepcopy
from glob import glob
import os
import pickle
from multiprocessing import Pool
import hashlib
import pickle
import logging
#import timeout_decorator
def _cont_hash(fn):
with open(fn, 'rb') as f:
return hashlib.md5(f.read()).hexdigest()
def load_templates_only(path, cache_dir='/tmp'):
arg_hash_base = 'load_templates_only' + path
arg_hash = hashlib.md5(arg_hash_base.encode()).hexdigest()
matches = glob(os.path.join(cache_dir, arg_hash+'*'))
if len(matches) > 1:
raise RuntimeError('Too many matches')
elif len(matches) == 1:
fn = matches[0]
content_hash = _cont_hash(path)
content_hash_file = os.path.basename(fn).split('_')[1].split('.')[0]
if content_hash_file == content_hash:
with open(fn, 'rb') as f:
return pickle.load(f)
df = pd.read_json(path)
template_dict = {}
for row in range(len(df)):
template_dict[df.iloc[row]['index']] = df.iloc[row].reaction_smarts
# cache the file
content_hash = _cont_hash(path)
fn = os.path.join(cache_dir, f"{arg_hash}_{content_hash}.p")
with open(fn, 'wb') as f:
pickle.dump(template_dict, f)
def load_templates_v2(path, get_complete_df=False):
if get_complete_df:
df = pd.read_json(path)
return df
return load_templates_only(path)
def canonicalize_reactants(smiles, can_steps=2):
if can_steps==0:
return smiles
mol = Chem.MolFromSmiles(smiles)
for a in mol.GetAtoms():
a.ClearProp('molAtomMapNumber')
smiles = Chem.MolToSmiles(mol, True)
if can_steps==1:
return smiles
smiles = Chem.MolToSmiles(Chem.MolFromSmiles(smiles), True)
if can_steps==2:
return smiles
raise ValueError("Invalid can_steps")
def load_test_set(fn):
df = pd.read_csv(fn, index_col=0)
test = df[df.dataset=='test']
test_product_smarts = list(test.prod_smiles) # we make predictions for these
for s in test_product_smarts:
assert len(s.split('.')) == 1
assert '>' not in s
test_reactants = [] # we want to predict these
for rs in list(test.rxn_smiles):
rs = rs.split('>>')
assert len(rs) == 2
reactants_ori, products = rs
reactants = reactants_ori.split('.')
products = products.split('.')
assert len(reactants) >= 1
assert len(products) == 1
test_reactants.append(reactants_ori)
return test_product_smarts, test_reactants
#@timeout_decorator.timeout(1, use_signals=False)
def time_out_rdchiralRun(temp, prod_rct, combine_enantiomers=False):
rxn = rdchiralReaction(temp)
return rdchiralRun(rxn, prod_rct, combine_enantiomers=combine_enantiomers)
def _run_templates_rdchiral(prod_appl):
prod, applicable_templates = prod_appl
prod_rct = rdchiralReactants(prod) # preprocess reactants with rdchiral
results = {}
for idx, temp in applicable_templates:
temp = str(temp)
try:
results[(idx, temp)] = time_out_rdchiralRun(temp, prod_rct, combine_enantiomers=False)
except:
pass
return results
def _run_templates_rdchiral_original(prod_appl):
prod, applicable_templates = prod_appl
prod_rct = rdchiralReactants(prod) # preprocess reactants with rdchiral
results = {}
rxn_cache = {}
for idx, temp in applicable_templates:
temp = str(temp)
if temp in rxn_cache:
rxn = rxn_cache[(temp)]
else:
try:
rxn = rdchiralReaction(temp)
rxn_cache[temp] = rxn
except:
rxn_cache[temp] = None
msg = temp+' error converting to rdchiralReaction'
logging.debug(msg)
try:
res = rdchiralRun(rxn, prod_rct, combine_enantiomers=False)
results[(idx, temp)] = res
except:
pass
return results
def run_templates(test_product_smarts, templates, appl, njobs=32, cache_dir='/tmp'):
appl_dict = defaultdict(list)
for i,j in zip(*appl):
appl_dict[i].append(j)
prod_appl_list = []
for prod_idx, prod in enumerate(test_product_smarts):
applicable_templates = [(idx, templates[idx]) for idx in appl_dict[prod_idx]]
prod_appl_list.append((prod, applicable_templates))
arg_hash = hashlib.md5(pickle.dumps(prod_appl_list)).hexdigest()
cache_file = os.path.join(cache_dir, arg_hash+'.p')
if os.path.isfile(cache_file):
with open(cache_file, 'rb') as f:
print('loading results from file',f)
all_results = pickle.load(f)
#find /tmp -type f \( ! -user root \) -atime +3 -delete
# to delete the tmp files that havent been accessed 3 days
else:
#with Pool(njobs) as pool:
# all_results = pool.map(_run_templates_rdchiral, prod_appl_list)
from tqdm.contrib.concurrent import process_map
all_results = process_map(_run_templates_rdchiral, prod_appl_list, max_workers=njobs, chunksize=1, mininterval=2)
#with open(cache_file, 'wb') as f:
# print('saving applicable_templates to cache', cache_file)
# pickle.dump(all_results, f)
prod_idx_reactants = []
prod_temp_reactants = []
for prod, idx_temp_reactants in zip(test_product_smarts, all_results):
prod_idx_reactants.append({idx_temp[0]: r for idx_temp, r in idx_temp_reactants.items()})
prod_temp_reactants.append({idx_temp[1]: r for idx_temp, r in idx_temp_reactants.items()})
return prod_idx_reactants, prod_temp_reactants
def sort_by_template(template_scores, prod_idx_reactants):
sorted_results = []
for i, predictions in enumerate(prod_idx_reactants):
score_row = template_scores[i]
appl_idxs = np.array(list(predictions.keys()))
if len(appl_idxs) == 0:
sorted_results.append([])
continue
scores = score_row[appl_idxs]
sorted_idxs = appl_idxs[np.argsort(scores)][::-1]
sorted_reactants = [predictions[idx] for idx in sorted_idxs]
sorted_results.append(sorted_reactants)
return sorted_results
def no_dup_same_order(l):
return list({r: 0 for r in l}.keys())
def flatten_per_product(sorted_results, remove_duplicates=True):
flat_results = [sum((r for r in row), []) for row in sorted_results]
if remove_duplicates:
flat_results = [no_dup_same_order(row) for row in flat_results]
return flat_results
def topkaccuracy(test_reactants, predicted_reactants, ks=[1], ret_ranks=False):
ks = [k if k is not None else 1e10 for k in ks]
ranks = []
for true, pred in zip(test_reactants, predicted_reactants):
try:
rank = pred.index(true) + 1
except ValueError:
rank = 1e15
ranks.append(rank)
ranks = np.array(ranks)
if ret_ranks:
return ranks
return [np.mean([ranks <= k]) for k in ks]