Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import logging
|
|
2 |
import os
|
3 |
import subprocess
|
4 |
import sys
|
5 |
-
import warnings
|
6 |
from dataclasses import dataclass
|
7 |
from pathlib import Path
|
8 |
from typing import Optional, Tuple
|
@@ -10,11 +9,6 @@ from urllib.request import urlopen, urlretrieve
|
|
10 |
|
11 |
import streamlit as st
|
12 |
from huggingface_hub import HfApi, whoami
|
13 |
-
from torch.jit import TracerWarning
|
14 |
-
from transformers import AutoConfig, GenerationConfig
|
15 |
-
|
16 |
-
# Suppress local TorchScript tracer warnings
|
17 |
-
warnings.filterwarnings("ignore", category=TracerWarning)
|
18 |
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
@@ -23,6 +17,7 @@ logger = logging.getLogger(__name__)
|
|
23 |
@dataclass
|
24 |
class Config:
|
25 |
"""Application configuration."""
|
|
|
26 |
hf_token: str
|
27 |
hf_username: str
|
28 |
transformers_version: str = "3.5.0"
|
@@ -44,8 +39,10 @@ class Config:
|
|
44 |
os.getenv("SPACE_AUTHOR_NAME") or whoami(token=system_token)["name"]
|
45 |
)
|
46 |
hf_token = user_token or system_token
|
|
|
47 |
if not hf_token:
|
48 |
raise ValueError("HF_TOKEN must be set")
|
|
|
49 |
return cls(hf_token=hf_token, hf_username=hf_username)
|
50 |
|
51 |
|
@@ -66,12 +63,14 @@ class ModelConverter:
|
|
66 |
return "heads"
|
67 |
|
68 |
def setup_repository(self) -> None:
|
69 |
-
"""Download and setup transformers
|
70 |
if self.config.repo_path.exists():
|
71 |
return
|
|
|
72 |
ref_type = self._get_ref_type()
|
73 |
archive_url = f"{self.config.transformers_base_url}/{ref_type}/{self.config.transformers_version}.tar.gz"
|
74 |
archive_path = Path(f"./transformers_{self.config.transformers_version}.tar.gz")
|
|
|
75 |
try:
|
76 |
urlretrieve(archive_url, archive_path)
|
77 |
self._extract_archive(archive_path)
|
@@ -83,38 +82,19 @@ class ModelConverter:
|
|
83 |
|
84 |
def _extract_archive(self, archive_path: Path) -> None:
|
85 |
"""Extract the downloaded archive."""
|
86 |
-
import tarfile
|
|
|
|
|
87 |
with tempfile.TemporaryDirectory() as tmp_dir:
|
88 |
with tarfile.open(archive_path, "r:gz") as tar:
|
89 |
tar.extractall(tmp_dir)
|
|
|
90 |
extracted_folder = next(Path(tmp_dir).iterdir())
|
91 |
extracted_folder.rename(self.config.repo_path)
|
92 |
|
93 |
def convert_model(self, input_model_id: str) -> Tuple[bool, Optional[str]]:
|
94 |
-
"""
|
95 |
-
Convert the model to ONNX, always exporting attention maps.
|
96 |
-
Relocate generation params, suppress tracer warnings, and
|
97 |
-
filter out relocation/tracer warnings from stderr.
|
98 |
-
"""
|
99 |
try:
|
100 |
-
# 1. Prepare a local folder for config tweaks
|
101 |
-
model_dir = self.config.repo_path / "models" / input_model_id
|
102 |
-
model_dir.mkdir(parents=True, exist_ok=True)
|
103 |
-
|
104 |
-
# 2. Move any generation parameters into generation_config.json
|
105 |
-
base_cfg = AutoConfig.from_pretrained(input_model_id)
|
106 |
-
gen_cfg = GenerationConfig.from_model_config(base_cfg)
|
107 |
-
for k in gen_cfg.to_dict():
|
108 |
-
if hasattr(base_cfg, k):
|
109 |
-
setattr(base_cfg, k, None)
|
110 |
-
base_cfg.save_pretrained(model_dir)
|
111 |
-
gen_cfg.save_pretrained(model_dir)
|
112 |
-
|
113 |
-
# 3. Set verbose logging via env var (no --debug flag)
|
114 |
-
env = os.environ.copy()
|
115 |
-
env["TRANSFORMERS_VERBOSITY"] = "debug"
|
116 |
-
|
117 |
-
# 4. Build and run the conversion command
|
118 |
cmd = [
|
119 |
sys.executable,
|
120 |
"-m", "scripts.convert",
|
@@ -128,43 +108,41 @@ class ModelConverter:
|
|
128 |
cwd=self.config.repo_path,
|
129 |
capture_output=True,
|
130 |
text=True,
|
131 |
-
env=
|
132 |
)
|
133 |
|
134 |
-
# 5. Filter out spurious warnings from stderr
|
135 |
-
filtered = []
|
136 |
-
for ln in result.stderr.splitlines():
|
137 |
-
if ln.startswith("Moving the following attributes"):
|
138 |
-
continue
|
139 |
-
if "TracerWarning" in ln:
|
140 |
-
continue
|
141 |
-
filtered.append(ln)
|
142 |
-
stderr = "\n".join(filtered)
|
143 |
-
|
144 |
if result.returncode != 0:
|
145 |
-
return False, stderr
|
146 |
-
|
|
|
147 |
|
148 |
except Exception as e:
|
149 |
return False, str(e)
|
150 |
|
151 |
def upload_model(self, input_model_id: str, output_model_id: str) -> Optional[str]:
|
152 |
-
"""Upload the converted model to Hugging Face
|
153 |
-
|
|
|
154 |
try:
|
155 |
self.api.create_repo(output_model_id, exist_ok=True, private=False)
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
return None
|
161 |
except Exception as e:
|
162 |
return str(e)
|
163 |
finally:
|
164 |
import shutil
|
165 |
-
shutil.rmtree(
|
166 |
|
167 |
-
def generate_readme(self, imi: str)
|
168 |
return (
|
169 |
"---\n"
|
170 |
"library_name: transformers.js\n"
|
@@ -173,13 +151,14 @@ class ModelConverter:
|
|
173 |
"---\n\n"
|
174 |
f"# {imi.split('/')[-1]} (ONNX)\n\n"
|
175 |
f"This is an ONNX version of [{imi}](https://huggingface.co/{imi}). "
|
176 |
-
"
|
|
|
177 |
)
|
178 |
|
179 |
|
180 |
def main():
|
181 |
-
"""
|
182 |
-
st.write("## Convert a Hugging Face model to ONNX (with attentions
|
183 |
|
184 |
try:
|
185 |
config = Config.from_env()
|
@@ -187,19 +166,21 @@ def main():
|
|
187 |
converter.setup_repository()
|
188 |
|
189 |
input_model_id = st.text_input(
|
190 |
-
"Enter the Hugging Face model ID to convert
|
191 |
)
|
192 |
if not input_model_id:
|
193 |
return
|
194 |
|
195 |
st.text_input(
|
196 |
-
"Optional: Your Hugging Face write token
|
197 |
type="password",
|
198 |
key="user_hf_token",
|
199 |
)
|
200 |
|
201 |
if config.hf_username == input_model_id.split("/")[0]:
|
202 |
-
same_repo = st.checkbox(
|
|
|
|
|
203 |
else:
|
204 |
same_repo = False
|
205 |
|
@@ -208,14 +189,20 @@ def main():
|
|
208 |
if not same_repo:
|
209 |
output_model_id += "-ONNX"
|
210 |
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
st.write("Destination repository:")
|
213 |
-
st.code(
|
214 |
|
215 |
-
if not st.button("Proceed", type="primary"):
|
216 |
return
|
217 |
|
218 |
-
with st.spinner("Converting model…"):
|
219 |
success, stderr = converter.convert_model(input_model_id)
|
220 |
if not success:
|
221 |
st.error(f"Conversion failed: {stderr}")
|
@@ -229,12 +216,14 @@ def main():
|
|
229 |
st.error(f"Upload failed: {error}")
|
230 |
return
|
231 |
st.success("Upload successful!")
|
232 |
-
st.
|
|
|
233 |
|
234 |
except Exception as e:
|
235 |
logger.exception("Application error")
|
236 |
-
st.error(f"An error occurred: {e}")
|
237 |
|
238 |
|
239 |
if __name__ == "__main__":
|
240 |
-
main()
|
|
|
|
2 |
import os
|
3 |
import subprocess
|
4 |
import sys
|
|
|
5 |
from dataclasses import dataclass
|
6 |
from pathlib import Path
|
7 |
from typing import Optional, Tuple
|
|
|
9 |
|
10 |
import streamlit as st
|
11 |
from huggingface_hub import HfApi, whoami
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
|
|
17 |
@dataclass
|
18 |
class Config:
|
19 |
"""Application configuration."""
|
20 |
+
|
21 |
hf_token: str
|
22 |
hf_username: str
|
23 |
transformers_version: str = "3.5.0"
|
|
|
39 |
os.getenv("SPACE_AUTHOR_NAME") or whoami(token=system_token)["name"]
|
40 |
)
|
41 |
hf_token = user_token or system_token
|
42 |
+
|
43 |
if not hf_token:
|
44 |
raise ValueError("HF_TOKEN must be set")
|
45 |
+
|
46 |
return cls(hf_token=hf_token, hf_username=hf_username)
|
47 |
|
48 |
|
|
|
63 |
return "heads"
|
64 |
|
65 |
def setup_repository(self) -> None:
|
66 |
+
"""Download and setup transformers repository if needed."""
|
67 |
if self.config.repo_path.exists():
|
68 |
return
|
69 |
+
|
70 |
ref_type = self._get_ref_type()
|
71 |
archive_url = f"{self.config.transformers_base_url}/{ref_type}/{self.config.transformers_version}.tar.gz"
|
72 |
archive_path = Path(f"./transformers_{self.config.transformers_version}.tar.gz")
|
73 |
+
|
74 |
try:
|
75 |
urlretrieve(archive_url, archive_path)
|
76 |
self._extract_archive(archive_path)
|
|
|
82 |
|
83 |
def _extract_archive(self, archive_path: Path) -> None:
|
84 |
"""Extract the downloaded archive."""
|
85 |
+
import tarfile
|
86 |
+
import tempfile
|
87 |
+
|
88 |
with tempfile.TemporaryDirectory() as tmp_dir:
|
89 |
with tarfile.open(archive_path, "r:gz") as tar:
|
90 |
tar.extractall(tmp_dir)
|
91 |
+
|
92 |
extracted_folder = next(Path(tmp_dir).iterdir())
|
93 |
extracted_folder.rename(self.config.repo_path)
|
94 |
|
95 |
def convert_model(self, input_model_id: str) -> Tuple[bool, Optional[str]]:
|
96 |
+
"""Convert the model to ONNX format, always exporting attention maps."""
|
|
|
|
|
|
|
|
|
97 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
cmd = [
|
99 |
sys.executable,
|
100 |
"-m", "scripts.convert",
|
|
|
108 |
cwd=self.config.repo_path,
|
109 |
capture_output=True,
|
110 |
text=True,
|
111 |
+
env={},
|
112 |
)
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
if result.returncode != 0:
|
115 |
+
return False, result.stderr
|
116 |
+
|
117 |
+
return True, result.stderr
|
118 |
|
119 |
except Exception as e:
|
120 |
return False, str(e)
|
121 |
|
122 |
def upload_model(self, input_model_id: str, output_model_id: str) -> Optional[str]:
|
123 |
+
"""Upload the converted model to Hugging Face."""
|
124 |
+
model_folder_path = self.config.repo_path / "models" / input_model_id
|
125 |
+
|
126 |
try:
|
127 |
self.api.create_repo(output_model_id, exist_ok=True, private=False)
|
128 |
+
|
129 |
+
readme_path = f"{model_folder_path}/README.md"
|
130 |
+
|
131 |
+
if not os.path.exists(readme_path):
|
132 |
+
with open(readme_path, "w") as file:
|
133 |
+
file.write(self.generate_readme(input_model_id))
|
134 |
+
|
135 |
+
self.api.upload_folder(
|
136 |
+
folder_path=str(model_folder_path), repo_id=output_model_id
|
137 |
+
)
|
138 |
return None
|
139 |
except Exception as e:
|
140 |
return str(e)
|
141 |
finally:
|
142 |
import shutil
|
143 |
+
shutil.rmtree(model_folder_path, ignore_errors=True)
|
144 |
|
145 |
+
def generate_readme(self, imi: str):
|
146 |
return (
|
147 |
"---\n"
|
148 |
"library_name: transformers.js\n"
|
|
|
151 |
"---\n\n"
|
152 |
f"# {imi.split('/')[-1]} (ONNX)\n\n"
|
153 |
f"This is an ONNX version of [{imi}](https://huggingface.co/{imi}). "
|
154 |
+
"It was automatically converted and uploaded using "
|
155 |
+
"[this space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).\n"
|
156 |
)
|
157 |
|
158 |
|
159 |
def main():
|
160 |
+
"""Main application entry point."""
|
161 |
+
st.write("## Convert a Hugging Face model to ONNX (with attentions)")
|
162 |
|
163 |
try:
|
164 |
config = Config.from_env()
|
|
|
166 |
converter.setup_repository()
|
167 |
|
168 |
input_model_id = st.text_input(
|
169 |
+
"Enter the Hugging Face model ID to convert. Example: `EleutherAI/pythia-14m`"
|
170 |
)
|
171 |
if not input_model_id:
|
172 |
return
|
173 |
|
174 |
st.text_input(
|
175 |
+
"Optional: Your Hugging Face write token. Fill it if you want to upload under your account.",
|
176 |
type="password",
|
177 |
key="user_hf_token",
|
178 |
)
|
179 |
|
180 |
if config.hf_username == input_model_id.split("/")[0]:
|
181 |
+
same_repo = st.checkbox(
|
182 |
+
"Upload ONNX weights to the same repository?"
|
183 |
+
)
|
184 |
else:
|
185 |
same_repo = False
|
186 |
|
|
|
189 |
if not same_repo:
|
190 |
output_model_id += "-ONNX"
|
191 |
|
192 |
+
output_model_url = f"{config.hf_base_url}/{output_model_id}"
|
193 |
+
|
194 |
+
if not same_repo and converter.api.repo_exists(output_model_id):
|
195 |
+
st.write("This model has already been converted! 🎉")
|
196 |
+
st.link_button(f"Go to {output_model_id}", output_model_url, type="primary")
|
197 |
+
return
|
198 |
+
|
199 |
st.write("Destination repository:")
|
200 |
+
st.code(output_model_url, language="plaintext")
|
201 |
|
202 |
+
if not st.button(label="Proceed", type="primary"):
|
203 |
return
|
204 |
|
205 |
+
with st.spinner("Converting model (including attention maps)…"):
|
206 |
success, stderr = converter.convert_model(input_model_id)
|
207 |
if not success:
|
208 |
st.error(f"Conversion failed: {stderr}")
|
|
|
216 |
st.error(f"Upload failed: {error}")
|
217 |
return
|
218 |
st.success("Upload successful!")
|
219 |
+
st.write("You can now view the model on Hugging Face:")
|
220 |
+
st.link_button(f"Go to {output_model_id}", output_model_url, type="primary")
|
221 |
|
222 |
except Exception as e:
|
223 |
logger.exception("Application error")
|
224 |
+
st.error(f"An error occurred: {str(e)}")
|
225 |
|
226 |
|
227 |
if __name__ == "__main__":
|
228 |
+
main()
|
229 |
+
|