File size: 2,517 Bytes
3bbb2bc
5a1023e
e6a73f7
c92f81a
ebf5ce4
 
53f544e
5a1023e
53f544e
e6a73f7
 
 
 
 
5af0a6f
866ad2c
5849d75
 
 
591cbd9
 
5849d75
 
 
 
e6a73f7
591cbd9
 
3fd2083
591cbd9
3fd2083
591cbd9
3fd2083
 
 
 
591cbd9
3fd2083
591cbd9
6cbe8da
 
591cbd9
9f33d67
5af0a6f
 
591cbd9
e6a73f7
 
 
 
 
591cbd9
e6a73f7
ef1c1db
e6a73f7
 
082d0de
 
e6a73f7
 
 
 
 
591cbd9
e6a73f7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
import torch
from diffusers import DiffusionPipeline
from PIL import Image
import numpy as np
from torchvision import transforms

device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize the inpainting model
try:
    inpaint_model = DiffusionPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1").to(device)
except Exception as e:
    print(f"Error initializing model: {e}")
    inpaint_model = None

# Load a test image
def load_test_image():
    try:
        # Provide the absolute path to a test image
        return Image.open("/absolute/path/to/your/test_image.png")
    except Exception as e:
        print(f"Error loading test image: {e}")
        return None

def process_image(prompt, image, style, upscale_factor, inpaint):
    if image is None:
        image = load_test_image()
        if image is None:
            return None, "No image received and failed to load test image."

    try:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        elif isinstance(image, torch.Tensor):
            image = transforms.ToPILImage()(image)
        elif not isinstance(image, Image.Image):
            return None, f"Unsupported image format: {type(image)}."
        
        print(f"Received image: {image.size}")
        # Placeholder for processing logic
        return image, None
    except Exception as e:
        error_message = f"Error in process_image function: {e}"
        print(error_message)
        return None, error_message

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Enter your prompt")
            image_input = gr.Image(label="Image (for inpainting)", type="pil")
            style_input = gr.Dropdown(choices=["Fooocus Style", "SAI Anime"], label="Select Style")
            upscale_input = gr.Slider(minimum=1, maximum=4, step=1, label="Upscale Factor")
            inpaint_input = gr.Checkbox(label="Enable Inpainting")
            
            output_image = gr.Image(label="Generated Image", type="pil")
            error_output = gr.Textbox(label="Error Details", lines=4, placeholder="Error details will appear here")

            generate_button = gr.Button("Generate Image")
            generate_button.click(
                process_image,
                inputs=[prompt_input, image_input, style_input, upscale_input, inpaint_input],
                outputs=[output_image, error_output]
            )

demo.launch()