File size: 6,270 Bytes
de0db89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training import train_state
import optax
from diffusers import FlaxStableDiffusionPipeline
from datasets import load_dataset
from tqdm.auto import tqdm
import os
import pickle
from PIL import Image
import numpy as np
# Set up cache directories
cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface")
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
os.makedirs(model_cache_dir, exist_ok=True)
print(f"Cache directory: {cache_dir}")
print(f"Model cache directory: {model_cache_dir}")
# Function to load or download the model
def get_model(model_id, revision):
model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl")
print(f"Model cache file: {model_cache_file}")
if os.path.exists(model_cache_file):
print("Loading model from cache...")
with open(model_cache_file, 'rb') as f:
return pickle.load(f)
else:
print("Downloading model...")
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
model_id,
revision=revision,
dtype=jnp.float32,
)
with open(model_cache_file, 'wb') as f:
pickle.dump((pipeline, params), f)
return pipeline, params
# Load the pre-trained model
model_id = "CompVis/stable-diffusion-v1-4"
pipeline, params = get_model(model_id, "flax")
# Extract UNet and its parameters
unet = pipeline.unet
unet_params = params["unet"]
# Modify the conv_in layer to match the input shape
input_channels = 3 # RGB images
unet_params['conv_in']['kernel'] = jax.random.normal(
jax.random.PRNGKey(0),
(3, 3, input_channels, unet_params['conv_in']['kernel'].shape[-1])
)
# Initialize training state
learning_rate = 1e-5
optimizer = optax.adam(learning_rate)
state = train_state.TrainState.create(
apply_fn=unet,
params=unet_params,
tx=optimizer,
)
# Load and preprocess your dataset
def preprocess_images(examples):
def process_image(image):
if isinstance(image, str):
image = Image.open(image)
if not isinstance(image, Image.Image):
raise ValueError(f"Unexpected image type: {type(image)}")
# Ensure the image is in RGBA mode (4 channels)
image = image.convert("RGBA")
# Resize the image
image = image.resize((512, 512))
# Convert to numpy array and normalize
image_array = np.array(image).astype(np.float32) / 127.5 - 1.0
# Ensure the array has shape (height, width, 4)
return image_array
return {"pixel_values": [process_image(img) for img in examples["image"]]}
# Load dataset with caching
dataset_path = "C:/Users/Admin/Downloads/Montevideo/Output"
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")
print(f"Dataset path: {dataset_path}")
print(f"Dataset cache file: {dataset_cache_file}")
if os.path.exists(dataset_cache_file):
print("Loading dataset from cache...")
with open(dataset_cache_file, 'rb') as f:
processed_dataset = pickle.load(f)
else:
print("Processing dataset...")
dataset = load_dataset("imagefolder", data_dir=dataset_path)
processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names)
with open(dataset_cache_file, 'wb') as f:
pickle.dump(processed_dataset, f)
print(f"Processed dataset size: {len(processed_dataset)}")
# Training function
def train_step(state, batch, rng, scheduler, text_encoder):
def compute_loss(params):
# Convert batch to JAX array
pixel_values = jnp.array(batch["pixel_values"])
batch_size = pixel_values.shape[0]
# Reshape pixel_values to match the expected input shape (NCHW format)
pixel_values = jnp.transpose(pixel_values, (0, 3, 1, 2)) # NHWC to NCHW
# Generate random noise
noise_rng, timestep_rng = jax.random.split(rng)
noise = jax.random.normal(noise_rng, pixel_values.shape)
# Sample random timesteps
timesteps = jax.random.randint(
timestep_rng, (batch_size,), 0, scheduler.config.num_train_timesteps
)
# Generate noisy images
scheduler_state = scheduler.create_state()
noisy_images = scheduler.add_noise(scheduler_state, pixel_values, noise, timesteps)
# Generate random encoder_hidden_states (text embeddings)
encoder_hidden_states = jax.random.normal(
noise_rng, (batch_size, 77, 768)
)
# Print shapes for debugging
print("Input shape:", noisy_images.shape)
print("Conv_in kernel shape:", params['conv_in']['kernel'].shape)
# Predict noise
model_output = state.apply_fn.apply(
{'params': params},
jnp.array(noisy_images),
jnp.array(timesteps),
encoder_hidden_states=encoder_hidden_states,
train=True,
)
# Compute loss
loss = jnp.mean((model_output - noise) ** 2)
return loss
loss, grads = jax.value_and_grad(compute_loss)(state.params)
state = state.apply_gradients(grads=grads)
return state, loss
# Initialize training state
learning_rate = 1e-5
optimizer = optax.adam(learning_rate)
state = train_state.TrainState.create(
apply_fn=unet,
params=unet_params,
tx=optimizer,
)
# Training loop
# Extract text encoder from pipeline
text_encoder = pipeline.text_encoder
# Training loop
num_epochs = 10
batch_size = 4
rng = jax.random.PRNGKey(0)
for epoch in range(num_epochs):
epoch_loss = 0
num_batches = 0
for batch in tqdm(processed_dataset.batch(batch_size)):
rng, step_rng = jax.random.split(rng)
state, loss = train_step(state, batch, step_rng, pipeline.scheduler, text_encoder)
epoch_loss += loss
num_batches += 1
avg_loss = epoch_loss / num_batches
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}")
# Save the fine-tuned model
output_dir = "montevideo_fine_tuned_model"
unet.save_pretrained(output_dir, params=state.params)
print(f"Model saved to {output_dir}")
|