File size: 6,270 Bytes
de0db89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training import train_state
import optax
from diffusers import FlaxStableDiffusionPipeline
from datasets import load_dataset
from tqdm.auto import tqdm
import os
import pickle
from PIL import Image
import numpy as np

# Set up cache directories
cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface")
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
os.makedirs(model_cache_dir, exist_ok=True)

print(f"Cache directory: {cache_dir}")
print(f"Model cache directory: {model_cache_dir}")

# Function to load or download the model
def get_model(model_id, revision):
    model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl")
    print(f"Model cache file: {model_cache_file}")
    if os.path.exists(model_cache_file):
        print("Loading model from cache...")
        with open(model_cache_file, 'rb') as f:
            return pickle.load(f)
    else:
        print("Downloading model...")
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            model_id, 
            revision=revision,
            dtype=jnp.float32,
        )
        with open(model_cache_file, 'wb') as f:
            pickle.dump((pipeline, params), f)
        return pipeline, params

# Load the pre-trained model
model_id = "CompVis/stable-diffusion-v1-4"
pipeline, params = get_model(model_id, "flax")

# Extract UNet and its parameters
unet = pipeline.unet
unet_params = params["unet"]

# Modify the conv_in layer to match the input shape
input_channels = 3  # RGB images
unet_params['conv_in']['kernel'] = jax.random.normal(
    jax.random.PRNGKey(0),
    (3, 3, input_channels, unet_params['conv_in']['kernel'].shape[-1])
)

# Initialize training state
learning_rate = 1e-5
optimizer = optax.adam(learning_rate)
state = train_state.TrainState.create(
    apply_fn=unet,
    params=unet_params,
    tx=optimizer,
)

# Load and preprocess your dataset
def preprocess_images(examples):
    def process_image(image):
        if isinstance(image, str):
            image = Image.open(image)
        if not isinstance(image, Image.Image):
            raise ValueError(f"Unexpected image type: {type(image)}")
        # Ensure the image is in RGBA mode (4 channels)
        image = image.convert("RGBA")
        # Resize the image
        image = image.resize((512, 512))
        # Convert to numpy array and normalize
        image_array = np.array(image).astype(np.float32) / 127.5 - 1.0
        # Ensure the array has shape (height, width, 4)
        return image_array

    return {"pixel_values": [process_image(img) for img in examples["image"]]}

# Load dataset with caching
dataset_path = "C:/Users/Admin/Downloads/Montevideo/Output"
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")

print(f"Dataset path: {dataset_path}")
print(f"Dataset cache file: {dataset_cache_file}")

if os.path.exists(dataset_cache_file):
    print("Loading dataset from cache...")
    with open(dataset_cache_file, 'rb') as f:
        processed_dataset = pickle.load(f)
else:
    print("Processing dataset...")
    dataset = load_dataset("imagefolder", data_dir=dataset_path)
    processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names)
    with open(dataset_cache_file, 'wb') as f:
        pickle.dump(processed_dataset, f)

print(f"Processed dataset size: {len(processed_dataset)}")

# Training function
def train_step(state, batch, rng, scheduler, text_encoder):
    def compute_loss(params):
        # Convert batch to JAX array
        pixel_values = jnp.array(batch["pixel_values"])
        batch_size = pixel_values.shape[0]
        
        # Reshape pixel_values to match the expected input shape (NCHW format)
        pixel_values = jnp.transpose(pixel_values, (0, 3, 1, 2))  # NHWC to NCHW
        
        # Generate random noise
        noise_rng, timestep_rng = jax.random.split(rng)
        noise = jax.random.normal(noise_rng, pixel_values.shape)
        
        # Sample random timesteps
        timesteps = jax.random.randint(
            timestep_rng, (batch_size,), 0, scheduler.config.num_train_timesteps
        )
        
        # Generate noisy images
        scheduler_state = scheduler.create_state()
        noisy_images = scheduler.add_noise(scheduler_state, pixel_values, noise, timesteps)
        
        # Generate random encoder_hidden_states (text embeddings)
        encoder_hidden_states = jax.random.normal(
            noise_rng, (batch_size, 77, 768)
        )
        
        # Print shapes for debugging
        print("Input shape:", noisy_images.shape)
        print("Conv_in kernel shape:", params['conv_in']['kernel'].shape)
        
        # Predict noise
        model_output = state.apply_fn.apply(
            {'params': params},
            jnp.array(noisy_images),
            jnp.array(timesteps),
            encoder_hidden_states=encoder_hidden_states,
            train=True,
        )
        
        # Compute loss
        loss = jnp.mean((model_output - noise) ** 2)
        return loss

    loss, grads = jax.value_and_grad(compute_loss)(state.params)
    state = state.apply_gradients(grads=grads)
    return state, loss



# Initialize training state
learning_rate = 1e-5
optimizer = optax.adam(learning_rate)
state = train_state.TrainState.create(
    apply_fn=unet,
    params=unet_params,
    tx=optimizer,
)

# Training loop
# Extract text encoder from pipeline
text_encoder = pipeline.text_encoder

# Training loop
num_epochs = 10
batch_size = 4
rng = jax.random.PRNGKey(0)

for epoch in range(num_epochs):
    epoch_loss = 0
    num_batches = 0
    for batch in tqdm(processed_dataset.batch(batch_size)):
        rng, step_rng = jax.random.split(rng)
        state, loss = train_step(state, batch, step_rng, pipeline.scheduler, text_encoder)
        epoch_loss += loss
        num_batches += 1
    avg_loss = epoch_loss / num_batches
    print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}")
    
# Save the fine-tuned model
output_dir = "montevideo_fine_tuned_model"
unet.save_pretrained(output_dir, params=state.params)

print(f"Model saved to {output_dir}")