|
import jax |
|
import jax.numpy as jnp |
|
from flax.jax_utils import replicate |
|
from flax.training import train_state |
|
import optax |
|
from diffusers import FlaxStableDiffusionPipeline |
|
from datasets import load_dataset |
|
from tqdm.auto import tqdm |
|
import os |
|
import pickle |
|
from PIL import Image |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
cache_dir = "/tmp/huggingface_cache" |
|
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model") |
|
os.makedirs(model_cache_dir, exist_ok=True) |
|
|
|
print(f"Cache directory: {cache_dir}") |
|
print(f"Model cache directory: {model_cache_dir}") |
|
|
|
|
|
def get_model(model_id, revision): |
|
model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl") |
|
print(f"Model cache file: {model_cache_file}") |
|
if os.path.exists(model_cache_file): |
|
print("Loading model from cache...") |
|
with open(model_cache_file, 'rb') as f: |
|
return pickle.load(f) |
|
else: |
|
print("Downloading model...") |
|
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( |
|
model_id, |
|
revision=revision, |
|
dtype=jnp.float32, |
|
) |
|
with open(model_cache_file, 'wb') as f: |
|
pickle.dump((pipeline, params), f) |
|
return pipeline, params |
|
|
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
pipeline, params = get_model(model_id, "flax") |
|
|
|
|
|
unet = pipeline.unet |
|
|
|
|
|
def preprocess_images(examples): |
|
def process_image(image): |
|
if isinstance(image, str): |
|
image = Image.open(image) |
|
if not isinstance(image, Image.Image): |
|
raise ValueError(f"Unexpected image type: {type(image)}") |
|
|
|
image = image.convert("RGB").resize((512, 512)) |
|
|
|
image = np.array(image).astype(np.float32) / 255.0 |
|
|
|
return image.transpose(2, 0, 1) |
|
|
|
return {"pixel_values": [process_image(img) for img in examples["image"]]} |
|
|
|
|
|
|
|
|
|
dataset_name = "uruguayai/montevideo" |
|
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl") |
|
|
|
print(f"Dataset name: {dataset_name}") |
|
print(f"Dataset cache file: {dataset_cache_file}") |
|
|
|
try: |
|
if os.path.exists(dataset_cache_file): |
|
print("Loading dataset from cache...") |
|
with open(dataset_cache_file, 'rb') as f: |
|
processed_dataset = pickle.load(f) |
|
else: |
|
print("Loading dataset from Hugging Face...") |
|
dataset = load_dataset(dataset_name) |
|
print("Dataset structure:", dataset) |
|
print("Available splits:", dataset.keys()) |
|
|
|
if "train" not in dataset: |
|
raise ValueError("The dataset does not contain a 'train' split.") |
|
|
|
print("Processing dataset...") |
|
processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names) |
|
with open(dataset_cache_file, 'wb') as f: |
|
pickle.dump(processed_dataset, f) |
|
|
|
print(f"Processed dataset size: {len(processed_dataset)}") |
|
|
|
except Exception as e: |
|
print(f"Error loading or processing dataset: {str(e)}") |
|
print("Attempting to find dataset...") |
|
|
|
|
|
print("Current directory contents:") |
|
print(os.listdir('.')) |
|
print("Parent directory contents:") |
|
print(os.listdir('..')) |
|
print("Root directory contents:") |
|
print(os.listdir('/')) |
|
|
|
|
|
for root, dirs, files in os.walk('/'): |
|
if 'montevideo' in dirs: |
|
print(f"Found 'montevideo' directory at: {os.path.join(root, 'montevideo')}") |
|
print(f"Contents: {os.listdir(os.path.join(root, 'montevideo'))}") |
|
|
|
raise ValueError("Unable to locate or load the dataset. Please check the dataset path and permissions.") |
|
|
|
|
|
|
|
def train_step(state, batch, rng): |
|
def compute_loss(params): |
|
|
|
pixel_values = jnp.array(batch["pixel_values"]) |
|
batch_size = pixel_values.shape[0] |
|
|
|
|
|
latents = pipeline.vae.apply( |
|
{"params": params["vae"]}, |
|
pixel_values, |
|
method=pipeline.vae.encode |
|
).latent_dist.sample(rng) |
|
latents = latents * 0.18215 |
|
|
|
|
|
noise_rng, timestep_rng, latents_rng = jax.random.split(rng, 3) |
|
noise = jax.random.normal(noise_rng, latents.shape) |
|
|
|
|
|
timesteps = jax.random.randint( |
|
timestep_rng, (batch_size,), 0, pipeline.scheduler.config.num_train_timesteps |
|
) |
|
|
|
|
|
scheduler_state = pipeline.scheduler.create_state() |
|
|
|
|
|
noisy_latents = pipeline.scheduler.add_noise( |
|
scheduler_state, |
|
original_samples=latents, |
|
noise=noise, |
|
timesteps=timesteps |
|
) |
|
|
|
|
|
encoder_hidden_states = jax.random.normal(latents_rng, (batch_size, pipeline.text_encoder.config.hidden_size)) |
|
|
|
|
|
model_output = state.apply_fn.apply( |
|
{'params': params["unet"]}, |
|
jnp.array(noisy_latents), |
|
jnp.array(timesteps), |
|
encoder_hidden_states=encoder_hidden_states, |
|
train=True, |
|
) |
|
|
|
|
|
loss = jnp.mean((model_output - noise) ** 2) |
|
return loss |
|
|
|
loss, grads = jax.value_and_grad(compute_loss)(state.params) |
|
state = state.apply_gradients(grads=grads) |
|
return state, loss |
|
|
|
|
|
learning_rate = 1e-5 |
|
optimizer = optax.adam(learning_rate) |
|
state = train_state.TrainState.create( |
|
apply_fn=unet, |
|
params={"unet": params["unet"], "vae": params["vae"]}, |
|
tx=optimizer, |
|
) |
|
|
|
|
|
num_epochs = 10 |
|
batch_size = 4 |
|
rng = jax.random.PRNGKey(0) |
|
|
|
for epoch in range(num_epochs): |
|
epoch_loss = 0 |
|
num_batches = 0 |
|
for batch in tqdm(processed_dataset.batch(batch_size)): |
|
|
|
batch['pixel_values'] = np.array(batch['pixel_values']) |
|
rng, step_rng = jax.random.split(rng) |
|
state, loss = train_step(state, batch, step_rng) |
|
epoch_loss += loss |
|
num_batches += 1 |
|
avg_loss = epoch_loss / num_batches |
|
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}") |
|
|
|
|
|
|
|
|
|
output_dir = "/tmp/montevideo_fine_tuned_model" |
|
os.makedirs(output_dir, exist_ok=True) |
|
unet.save_pretrained(output_dir, params=state.params) |
|
|
|
print(f"Model saved to {output_dir}") |