|
import jax |
|
import jax.numpy as jnp |
|
from flax.jax_utils import replicate |
|
from flax.training import train_state |
|
import optax |
|
from diffusers import FlaxStableDiffusionPipeline, FlaxUNet2DConditionModel |
|
from diffusers.schedulers import FlaxPNDMScheduler |
|
from datasets import load_dataset |
|
from tqdm.auto import tqdm |
|
import os |
|
import pickle |
|
from PIL import Image |
|
import numpy as np |
|
|
|
|
|
class CustomFlaxPNDMScheduler(FlaxPNDMScheduler): |
|
def add_noise(self, state, original_samples, noise, timesteps): |
|
timesteps = timesteps.astype(jnp.int32) |
|
return super().add_noise(state, original_samples, noise, timesteps) |
|
|
|
|
|
cache_dir = "/tmp/huggingface_cache" |
|
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model") |
|
os.makedirs(model_cache_dir, exist_ok=True) |
|
|
|
print(f"Cache directory: {cache_dir}") |
|
print(f"Model cache directory: {model_cache_dir}") |
|
|
|
|
|
def get_model(model_id, revision): |
|
model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl") |
|
print(f"Model cache file: {model_cache_file}") |
|
if os.path.exists(model_cache_file): |
|
print("Loading model from cache...") |
|
with open(model_cache_file, 'rb') as f: |
|
return pickle.load(f) |
|
else: |
|
print("Downloading model...") |
|
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( |
|
model_id, |
|
revision=revision, |
|
dtype=jnp.float32, |
|
) |
|
with open(model_cache_file, 'wb') as f: |
|
pickle.dump((pipeline, params), f) |
|
return pipeline, params |
|
|
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
pipeline, params = get_model(model_id, "flax") |
|
|
|
|
|
custom_scheduler = CustomFlaxPNDMScheduler.from_config(pipeline.scheduler.config) |
|
pipeline.scheduler = custom_scheduler |
|
|
|
|
|
unet = pipeline.unet |
|
|
|
|
|
def adjust_unet_input_layer(params): |
|
conv_in_weight = params['unet']['conv_in']['kernel'] |
|
new_conv_in_weight = jnp.zeros((3, 3, 4, 320), dtype=jnp.float32) |
|
new_conv_in_weight = new_conv_in_weight.at[:, :, :3, :].set(conv_in_weight[:, :, :3, :]) |
|
params['unet']['conv_in']['kernel'] = new_conv_in_weight |
|
return params |
|
|
|
params = adjust_unet_input_layer(params) |
|
|
|
|
|
def preprocess_images(examples): |
|
def process_image(image): |
|
if isinstance(image, str): |
|
if not image.lower().endswith('.jpg') and not image.lower().endswith('.jpeg'): |
|
return None |
|
image = Image.open(image) |
|
if not isinstance(image, Image.Image): |
|
return None |
|
image = image.convert("RGB").resize((512, 512)) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
return image.transpose(2, 0, 1) |
|
|
|
processed = [process_image(img) for img in examples["image"]] |
|
return {"pixel_values": [img for img in processed if img is not None]} |
|
|
|
|
|
dataset_name = "uruguayai/montevideo" |
|
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl") |
|
|
|
print(f"Dataset name: {dataset_name}") |
|
print(f"Dataset cache file: {dataset_cache_file}") |
|
|
|
if os.path.exists(dataset_cache_file): |
|
print("Loading dataset from cache...") |
|
with open(dataset_cache_file, 'rb') as f: |
|
processed_dataset = pickle.load(f) |
|
else: |
|
print("Processing dataset...") |
|
dataset = load_dataset(dataset_name) |
|
processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names) |
|
processed_dataset = processed_dataset.filter(lambda example: len(example['pixel_values']) > 0) |
|
with open(dataset_cache_file, 'wb') as f: |
|
pickle.dump(processed_dataset, f) |
|
|
|
print(f"Processed dataset size: {len(processed_dataset)}") |
|
|
|
|
|
def train_step(state, batch, rng): |
|
def compute_loss(params, pixel_values, rng): |
|
pixel_values = jnp.array(pixel_values, dtype=jnp.float32) |
|
|
|
latents = pipeline.vae.apply( |
|
{"params": params["vae"]}, |
|
pixel_values, |
|
method=pipeline.vae.encode |
|
).latent_dist.sample(rng) |
|
latents = latents * jnp.float32(0.18215) |
|
|
|
noise = jax.random.normal(rng, latents.shape, dtype=jnp.float32) |
|
|
|
timesteps = jax.random.randint( |
|
rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps |
|
) |
|
|
|
noisy_latents = pipeline.scheduler.add_noise( |
|
pipeline.scheduler.create_state(), |
|
original_samples=latents, |
|
noise=noise, |
|
timesteps=timesteps |
|
) |
|
|
|
encoder_hidden_states = jax.random.normal( |
|
rng, |
|
(latents.shape[0], pipeline.text_encoder.config.hidden_size), |
|
dtype=jnp.float32 |
|
) |
|
|
|
|
|
model_output = unet.apply( |
|
{'params': params["unet"]}, |
|
noisy_latents, |
|
jnp.array(timesteps, dtype=jnp.int32), |
|
encoder_hidden_states, |
|
train=True, |
|
).sample |
|
|
|
return jnp.mean((model_output - noise) ** 2) |
|
|
|
grad_fn = jax.grad(compute_loss, argnums=0, allow_int=True) |
|
rng, step_rng = jax.random.split(rng) |
|
|
|
grads = grad_fn(state.params, batch["pixel_values"], step_rng) |
|
loss = compute_loss(state.params, batch["pixel_values"], step_rng) |
|
state = state.apply_gradients(grads=grads) |
|
return state, loss |
|
|
|
|
|
learning_rate = 1e-5 |
|
optimizer = optax.adam(learning_rate) |
|
float32_params = jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype != jnp.int32 else x, params) |
|
state = train_state.TrainState.create( |
|
apply_fn=unet.apply, |
|
params=float32_params, |
|
tx=optimizer, |
|
) |
|
|
|
|
|
num_epochs = 3 |
|
batch_size = 1 |
|
rng = jax.random.PRNGKey(0) |
|
|
|
for epoch in range(num_epochs): |
|
epoch_loss = 0 |
|
num_batches = 0 |
|
for batch in tqdm(processed_dataset.batch(batch_size)): |
|
batch['pixel_values'] = jnp.array(batch['pixel_values'], dtype=jnp.float32) |
|
rng, step_rng = jax.random.split(rng) |
|
state, loss = train_step(state, batch, step_rng) |
|
epoch_loss += loss |
|
num_batches += 1 |
|
|
|
if num_batches % 10 == 0: |
|
jax.clear_caches() |
|
|
|
avg_loss = epoch_loss / num_batches |
|
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}") |
|
jax.clear_caches() |
|
|
|
|
|
output_dir = "/tmp/montevideo_fine_tuned_model" |
|
os.makedirs(output_dir, exist_ok=True) |
|
unet.save_pretrained(output_dir, params=state.params["unet"]) |
|
|
|
print(f"Model saved to {output_dir}") |