Update app.py
Browse files
app.py
CHANGED
@@ -122,6 +122,7 @@ if len(sample_batch['pixel_values']) > 0:
|
|
122 |
def train_step(state, batch, rng):
|
123 |
def compute_loss(params, pixel_values, rng):
|
124 |
pixel_values = jnp.array(pixel_values, dtype=jnp.float32)
|
|
|
125 |
print(f"pixel_values shape in compute_loss: {pixel_values.shape}")
|
126 |
|
127 |
latents = pipeline.vae.apply(
|
@@ -129,86 +130,4 @@ def train_step(state, batch, rng):
|
|
129 |
pixel_values,
|
130 |
method=pipeline.vae.encode
|
131 |
).latent_dist.sample(rng)
|
132 |
-
latents = latents *
|
133 |
-
print(f"latents shape: {latents.shape}")
|
134 |
-
|
135 |
-
noise = jax.random.normal(rng, latents.shape, dtype=jnp.float32)
|
136 |
-
|
137 |
-
timesteps = jax.random.randint(
|
138 |
-
rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps
|
139 |
-
)
|
140 |
-
|
141 |
-
noisy_latents = pipeline.scheduler.add_noise(
|
142 |
-
pipeline.scheduler.create_state(),
|
143 |
-
original_samples=latents,
|
144 |
-
noise=noise,
|
145 |
-
timesteps=timesteps
|
146 |
-
)
|
147 |
-
|
148 |
-
encoder_hidden_states = jax.random.normal(
|
149 |
-
rng,
|
150 |
-
(latents.shape[0], pipeline.text_encoder.config.hidden_size),
|
151 |
-
dtype=jnp.float32
|
152 |
-
)
|
153 |
-
|
154 |
-
print(f"noisy_latents shape: {noisy_latents.shape}")
|
155 |
-
print(f"timesteps shape: {timesteps.shape}")
|
156 |
-
print(f"encoder_hidden_states shape: {encoder_hidden_states.shape}")
|
157 |
-
|
158 |
-
# Use the correct method to call the UNet
|
159 |
-
model_output = unet.apply(
|
160 |
-
{'params': params["unet"]},
|
161 |
-
noisy_latents,
|
162 |
-
jnp.array(timesteps, dtype=jnp.int32),
|
163 |
-
encoder_hidden_states,
|
164 |
-
train=True,
|
165 |
-
).sample
|
166 |
-
|
167 |
-
return jnp.mean((model_output - noise) ** 2)
|
168 |
-
|
169 |
-
grad_fn = jax.grad(compute_loss, argnums=0, allow_int=True)
|
170 |
-
rng, step_rng = jax.random.split(rng)
|
171 |
-
|
172 |
-
grads = grad_fn(state.params, batch["pixel_values"], step_rng)
|
173 |
-
loss = compute_loss(state.params, batch["pixel_values"], step_rng)
|
174 |
-
state = state.apply_gradients(grads=grads)
|
175 |
-
return state, loss
|
176 |
-
|
177 |
-
# Initialize training state
|
178 |
-
learning_rate = 1e-5
|
179 |
-
optimizer = optax.adam(learning_rate)
|
180 |
-
float32_params = jax.tree_util.tree_map(lambda x: x.astype(jnp.float32) if x.dtype != jnp.int32 else x, params)
|
181 |
-
state = train_state.TrainState.create(
|
182 |
-
apply_fn=unet.apply,
|
183 |
-
params=float32_params,
|
184 |
-
tx=optimizer,
|
185 |
-
)
|
186 |
-
|
187 |
-
# Training loop
|
188 |
-
num_epochs = 3
|
189 |
-
batch_size = 1
|
190 |
-
rng = jax.random.PRNGKey(0)
|
191 |
-
|
192 |
-
for epoch in range(num_epochs):
|
193 |
-
epoch_loss = 0
|
194 |
-
num_batches = 0
|
195 |
-
for batch in tqdm(processed_dataset.batch(batch_size)):
|
196 |
-
batch['pixel_values'] = jnp.array(batch['pixel_values'][0], dtype=jnp.float32)
|
197 |
-
rng, step_rng = jax.random.split(rng)
|
198 |
-
state, loss = train_step(state, batch, step_rng)
|
199 |
-
epoch_loss += loss
|
200 |
-
num_batches += 1
|
201 |
-
|
202 |
-
if num_batches % 10 == 0:
|
203 |
-
jax.clear_caches()
|
204 |
-
|
205 |
-
avg_loss = epoch_loss / num_batches
|
206 |
-
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}")
|
207 |
-
jax.clear_caches()
|
208 |
-
|
209 |
-
# Save the fine-tuned model
|
210 |
-
output_dir = "/tmp/montevideo_fine_tuned_model"
|
211 |
-
os.makedirs(output_dir, exist_ok=True)
|
212 |
-
unet.save_pretrained(output_dir, params=state.params["unet"])
|
213 |
-
|
214 |
-
print(f"Model saved to {output_dir}")
|
|
|
122 |
def train_step(state, batch, rng):
|
123 |
def compute_loss(params, pixel_values, rng):
|
124 |
pixel_values = jnp.array(pixel_values, dtype=jnp.float32)
|
125 |
+
pixel_values = jnp.expand_dims(pixel_values, axis=0) # Add batch dimension
|
126 |
print(f"pixel_values shape in compute_loss: {pixel_values.shape}")
|
127 |
|
128 |
latents = pipeline.vae.apply(
|
|
|
130 |
pixel_values,
|
131 |
method=pipeline.vae.encode
|
132 |
).latent_dist.sample(rng)
|
133 |
+
latents = latents *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|