Update app.py
Browse files
app.py
CHANGED
@@ -56,6 +56,22 @@ pipeline.scheduler = custom_scheduler
|
|
56 |
# Extract UNet from pipeline
|
57 |
unet = pipeline.unet
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Load and preprocess your dataset
|
60 |
def preprocess_images(examples):
|
61 |
def process_image(image):
|
|
|
56 |
# Extract UNet from pipeline
|
57 |
unet = pipeline.unet
|
58 |
|
59 |
+
# Modify the UNet's input layer
|
60 |
+
def modify_unet_input_layer(params):
|
61 |
+
conv_in_weight = params['unet']['conv_in']['kernel']
|
62 |
+
conv_in_bias = params['unet']['conv_in']['bias']
|
63 |
+
|
64 |
+
# Adjust the weight tensor
|
65 |
+
new_weight = jnp.zeros((3, 3, 4, 320), dtype=jnp.float32)
|
66 |
+
new_weight = new_weight.at[:, :, :4, :].set(conv_in_weight[:, :, :4, :])
|
67 |
+
|
68 |
+
# Update the parameters
|
69 |
+
params['unet']['conv_in']['kernel'] = new_weight
|
70 |
+
|
71 |
+
return params
|
72 |
+
|
73 |
+
params = modify_unet_input_layer(params)
|
74 |
+
|
75 |
# Load and preprocess your dataset
|
76 |
def preprocess_images(examples):
|
77 |
def process_image(image):
|