Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ from PIL import Image
|
|
12 |
import numpy as np
|
13 |
|
14 |
# Set up cache directories
|
15 |
-
cache_dir =
|
16 |
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
|
17 |
os.makedirs(model_cache_dir, exist_ok=True)
|
18 |
|
@@ -29,11 +29,12 @@ def get_model(model_id, revision):
|
|
29 |
return pickle.load(f)
|
30 |
else:
|
31 |
print("Downloading model...")
|
32 |
-
pipeline
|
33 |
model_id,
|
34 |
revision=revision,
|
35 |
dtype=jnp.float32,
|
36 |
)
|
|
|
37 |
with open(model_cache_file, 'wb') as f:
|
38 |
pickle.dump((pipeline, params), f)
|
39 |
return pipeline, params
|
@@ -42,25 +43,8 @@ def get_model(model_id, revision):
|
|
42 |
model_id = "CompVis/stable-diffusion-v1-4"
|
43 |
pipeline, params = get_model(model_id, "flax")
|
44 |
|
45 |
-
# Extract UNet
|
46 |
unet = pipeline.unet
|
47 |
-
unet_params = params["unet"]
|
48 |
-
|
49 |
-
# Modify the conv_in layer to match the input shape
|
50 |
-
input_channels = 3 # RGB images
|
51 |
-
unet_params['conv_in']['kernel'] = jax.random.normal(
|
52 |
-
jax.random.PRNGKey(0),
|
53 |
-
(3, 3, input_channels, unet_params['conv_in']['kernel'].shape[-1])
|
54 |
-
)
|
55 |
-
|
56 |
-
# Initialize training state
|
57 |
-
learning_rate = 1e-5
|
58 |
-
optimizer = optax.adam(learning_rate)
|
59 |
-
state = train_state.TrainState.create(
|
60 |
-
apply_fn=unet,
|
61 |
-
params=unet_params,
|
62 |
-
tx=optimizer,
|
63 |
-
)
|
64 |
|
65 |
# Load and preprocess your dataset
|
66 |
def preprocess_images(examples):
|
@@ -69,119 +53,54 @@ def preprocess_images(examples):
|
|
69 |
image = Image.open(image)
|
70 |
if not isinstance(image, Image.Image):
|
71 |
raise ValueError(f"Unexpected image type: {type(image)}")
|
72 |
-
|
73 |
-
image = image.convert("RGBA")
|
74 |
-
# Resize the image
|
75 |
-
image = image.resize((512, 512))
|
76 |
-
# Convert to numpy array and normalize
|
77 |
-
image_array = np.array(image).astype(np.float32) / 127.5 - 1.0
|
78 |
-
# Ensure the array has shape (height, width, 4)
|
79 |
-
return image_array
|
80 |
|
81 |
return {"pixel_values": [process_image(img) for img in examples["image"]]}
|
82 |
|
83 |
-
# Load dataset
|
84 |
-
|
85 |
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")
|
86 |
|
87 |
-
print(f"Dataset
|
88 |
print(f"Dataset cache file: {dataset_cache_file}")
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
print(f"Processed dataset size: {len(processed_dataset)}")
|
102 |
-
|
103 |
-
# Training function
|
104 |
-
def train_step(state, batch, rng, scheduler, text_encoder):
|
105 |
-
def compute_loss(params):
|
106 |
-
# Convert batch to JAX array
|
107 |
-
pixel_values = jnp.array(batch["pixel_values"])
|
108 |
-
batch_size = pixel_values.shape[0]
|
109 |
-
|
110 |
-
# Reshape pixel_values to match the expected input shape (NCHW format)
|
111 |
-
pixel_values = jnp.transpose(pixel_values, (0, 3, 1, 2)) # NHWC to NCHW
|
112 |
-
|
113 |
-
# Generate random noise
|
114 |
-
noise_rng, timestep_rng = jax.random.split(rng)
|
115 |
-
noise = jax.random.normal(noise_rng, pixel_values.shape)
|
116 |
-
|
117 |
-
# Sample random timesteps
|
118 |
-
timesteps = jax.random.randint(
|
119 |
-
timestep_rng, (batch_size,), 0, scheduler.config.num_train_timesteps
|
120 |
-
)
|
121 |
-
|
122 |
-
# Generate noisy images
|
123 |
-
scheduler_state = scheduler.create_state()
|
124 |
-
noisy_images = scheduler.add_noise(scheduler_state, pixel_values, noise, timesteps)
|
125 |
-
|
126 |
-
# Generate random encoder_hidden_states (text embeddings)
|
127 |
-
encoder_hidden_states = jax.random.normal(
|
128 |
-
noise_rng, (batch_size, 77, 768)
|
129 |
-
)
|
130 |
-
|
131 |
-
# Print shapes for debugging
|
132 |
-
print("Input shape:", noisy_images.shape)
|
133 |
-
print("Conv_in kernel shape:", params['conv_in']['kernel'].shape)
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
{'params': params},
|
138 |
-
jnp.array(noisy_images),
|
139 |
-
jnp.array(timesteps),
|
140 |
-
encoder_hidden_states=encoder_hidden_states,
|
141 |
-
train=True,
|
142 |
-
)
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
)
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
# Training loop
|
168 |
-
num_epochs = 10
|
169 |
-
batch_size = 4
|
170 |
-
rng = jax.random.PRNGKey(0)
|
171 |
-
|
172 |
-
for epoch in range(num_epochs):
|
173 |
-
epoch_loss = 0
|
174 |
-
num_batches = 0
|
175 |
-
for batch in tqdm(processed_dataset.batch(batch_size)):
|
176 |
-
rng, step_rng = jax.random.split(rng)
|
177 |
-
state, loss = train_step(state, batch, step_rng, pipeline.scheduler, text_encoder)
|
178 |
-
epoch_loss += loss
|
179 |
-
num_batches += 1
|
180 |
-
avg_loss = epoch_loss / num_batches
|
181 |
-
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}")
|
182 |
-
|
183 |
-
# Save the fine-tuned model
|
184 |
-
output_dir = "montevideo_fine_tuned_model"
|
185 |
-
unet.save_pretrained(output_dir, params=state.params)
|
186 |
|
187 |
-
|
|
|
|
12 |
import numpy as np
|
13 |
|
14 |
# Set up cache directories
|
15 |
+
cache_dir = "/tmp/huggingface_cache"
|
16 |
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
|
17 |
os.makedirs(model_cache_dir, exist_ok=True)
|
18 |
|
|
|
29 |
return pickle.load(f)
|
30 |
else:
|
31 |
print("Downloading model...")
|
32 |
+
pipeline = FlaxStableDiffusionPipeline.from_pretrained(
|
33 |
model_id,
|
34 |
revision=revision,
|
35 |
dtype=jnp.float32,
|
36 |
)
|
37 |
+
params = pipeline.params
|
38 |
with open(model_cache_file, 'wb') as f:
|
39 |
pickle.dump((pipeline, params), f)
|
40 |
return pipeline, params
|
|
|
43 |
model_id = "CompVis/stable-diffusion-v1-4"
|
44 |
pipeline, params = get_model(model_id, "flax")
|
45 |
|
46 |
+
# Extract UNet from pipeline
|
47 |
unet = pipeline.unet
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Load and preprocess your dataset
|
50 |
def preprocess_images(examples):
|
|
|
53 |
image = Image.open(image)
|
54 |
if not isinstance(image, Image.Image):
|
55 |
raise ValueError(f"Unexpected image type: {type(image)}")
|
56 |
+
return np.array(image.convert("RGB").resize((512, 512))).astype(np.float32) / 127.5 - 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
return {"pixel_values": [process_image(img) for img in examples["image"]]}
|
59 |
|
60 |
+
# Load dataset from Hugging Face
|
61 |
+
dataset_name = "uruguayai/montevideo"
|
62 |
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")
|
63 |
|
64 |
+
print(f"Dataset name: {dataset_name}")
|
65 |
print(f"Dataset cache file: {dataset_cache_file}")
|
66 |
|
67 |
+
try:
|
68 |
+
if os.path.exists(dataset_cache_file):
|
69 |
+
print("Loading dataset from cache...")
|
70 |
+
with open(dataset_cache_file, 'rb') as f:
|
71 |
+
processed_dataset = pickle.load(f)
|
72 |
+
else:
|
73 |
+
print("Loading dataset from Hugging Face...")
|
74 |
+
dataset = load_dataset(dataset_name)
|
75 |
+
print("Dataset structure:", dataset)
|
76 |
+
print("Available splits:", dataset.keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
if "train" not in dataset:
|
79 |
+
raise ValueError("The dataset does not contain a 'train' split.")
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
print("Processing dataset...")
|
82 |
+
processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names)
|
83 |
+
with open(dataset_cache_file, 'wb') as f:
|
84 |
+
pickle.dump(processed_dataset, f)
|
85 |
+
|
86 |
+
print(f"Processed dataset size: {len(processed_dataset)}")
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error loading or processing dataset: {str(e)}")
|
90 |
+
print("Attempting to load from local path...")
|
91 |
+
local_path = "/home/user/app/uruguayai/montevideo"
|
92 |
+
if os.path.exists(local_path):
|
93 |
+
print(f"Local path exists. Contents: {os.listdir(local_path)}")
|
94 |
+
dataset = load_dataset("imagefolder", data_dir=local_path)
|
95 |
+
print("Dataset structure:", dataset)
|
96 |
+
print("Available splits:", dataset.keys())
|
97 |
+
if "train" in dataset:
|
98 |
+
processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names)
|
99 |
+
print(f"Processed dataset size: {len(processed_dataset)}")
|
100 |
+
else:
|
101 |
+
raise ValueError("The local dataset does not contain a 'train' split.")
|
102 |
+
else:
|
103 |
+
raise ValueError(f"Local path {local_path} does not exist.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
# Rest of your code (training loop, etc.) remains the same
|
106 |
+
...
|