Spaces:
Running
on
Zero
Running
on
Zero
created app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import uuid
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision import transforms
|
6 |
+
from transformers import AutoModelForImageSegmentation
|
7 |
+
from typing import Union, List
|
8 |
+
from loadimg import load_img # Your helper to load from URL or file
|
9 |
+
|
10 |
+
torch.set_float32_matmul_precision("high")
|
11 |
+
|
12 |
+
# Load BiRefNet model
|
13 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
14 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
15 |
+
)
|
16 |
+
birefnet.to("cuda")
|
17 |
+
|
18 |
+
# Image transformation
|
19 |
+
transform_image = transforms.Compose([
|
20 |
+
transforms.Resize((1024, 1024)),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
23 |
+
])
|
24 |
+
|
25 |
+
def process(image: Image.Image) -> Image.Image:
|
26 |
+
image_size = image.size
|
27 |
+
input_tensor = transform_image(image).unsqueeze(0).to("cuda")
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
preds = birefnet(input_tensor)[-1].sigmoid().cpu()
|
31 |
+
|
32 |
+
pred = preds[0].squeeze()
|
33 |
+
mask = transforms.ToPILImage()(pred).resize(image_size).convert("L")
|
34 |
+
binary_mask = mask.point(lambda p: 255 if p > 127 else 0)
|
35 |
+
|
36 |
+
white_bg = Image.new("RGB", image_size, (255, 255, 255))
|
37 |
+
result = Image.composite(image, white_bg, binary_mask)
|
38 |
+
return result
|
39 |
+
|
40 |
+
def handler(image=None, image_url=None, batch_urls=None) -> Union[str, List[str], None]:
|
41 |
+
results = []
|
42 |
+
|
43 |
+
try:
|
44 |
+
# Single image upload
|
45 |
+
if image is not None:
|
46 |
+
image = image.convert("RGB")
|
47 |
+
processed = process(image)
|
48 |
+
filename = f"output_{uuid.uuid4().hex[:8]}.png"
|
49 |
+
processed.save(filename)
|
50 |
+
return filename
|
51 |
+
|
52 |
+
# Single image from URL
|
53 |
+
if image_url:
|
54 |
+
im = load_img(image_url, output_type="pil").convert("RGB")
|
55 |
+
processed = process(im)
|
56 |
+
filename = f"output_{uuid.uuid4().hex[:8]}.png"
|
57 |
+
processed.save(filename)
|
58 |
+
return filename
|
59 |
+
|
60 |
+
# Batch of URLs
|
61 |
+
if batch_urls:
|
62 |
+
urls = [u.strip() for u in batch_urls.split(",") if u.strip()]
|
63 |
+
for url in urls:
|
64 |
+
try:
|
65 |
+
im = load_img(url, output_type="pil").convert("RGB")
|
66 |
+
processed = process(im)
|
67 |
+
filename = f"output_{uuid.uuid4().hex[:8]}.png"
|
68 |
+
processed.save(filename)
|
69 |
+
results.append(filename)
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error with {url}: {e}")
|
72 |
+
return results if results else None
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
print("General error:", e)
|
76 |
+
|
77 |
+
return None
|
78 |
+
|
79 |
+
# Interface
|
80 |
+
demo = gr.Interface(
|
81 |
+
fn=handler,
|
82 |
+
inputs=[
|
83 |
+
gr.Image(label="Upload Image", type="pil", optional=True),
|
84 |
+
gr.Textbox(label="Paste Image URL", optional=True),
|
85 |
+
gr.Textbox(label="Comma-separated Image URLs (Batch)", optional=True),
|
86 |
+
],
|
87 |
+
outputs=gr.File(label="Output File(s)", file_count="multiple"),
|
88 |
+
title="Background Remover (White Fill)",
|
89 |
+
description="Upload an image, paste a URL, or send a batch of URLs to remove the background and replace it with white.",
|
90 |
+
)
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
demo.launch(show_error=True, mcp_server=True)
|