Spaces:
Runtime error
Runtime error
import spaces | |
import base64 | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from io import BytesIO | |
def crop_face(base64_image): | |
try: | |
# Decode the base64 image | |
img_data = base64.b64decode(base64_image) | |
np_arr = np.frombuffer(img_data, np.uint8) | |
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) | |
if image is None: | |
return "Could not decode the image or no data in buffer" | |
# Load the pre-trained face detector | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
# Convert the image to grayscale | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Detect faces in the image | |
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) | |
# If no faces are detected, return message | |
if len(faces) == 0: | |
return "No faces found" | |
# Crop the first face found | |
x, y, w, h = faces[0] | |
face_crop = image[y:y+h, x:x+w] | |
# Encode the cropped face to base64 | |
_, buffer = cv2.imencode('.jpg', face_crop) | |
face_base64 = base64.b64encode(buffer).decode('utf-8') | |
return face_base64 | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
def image_to_base64(image): | |
try: | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
print("Encoded String:", img_str[:100]) # Print the first 100 characters | |
return img_str | |
except Exception as e: | |
print("Error:", str(e)) | |
return f"An error occurred: {str(e)}" | |
# Define the Gradio interfaces | |
base64_converter_interface = gr.Interface( | |
fn=image_to_base64, | |
inputs=gr.Image(), | |
outputs="text", | |
title="Image to Base64 Converter", | |
description="Upload an image to convert it to a Base64 encoded string." | |
) | |
face_crop_interface = gr.Interface( | |
fn=crop_face, | |
inputs="text", | |
outputs="text", | |
title="Face Cropper", | |
description="Input a base64 encoded image to get a base64 encoded cropped face." | |
) | |
if __name__ == "__main__": | |
gr.TabbedInterface([face_crop_interface, base64_converter_interface], ["Convert to Base64","Crop Face"]).launch() | |