face-crop / app.py
user-agent's picture
Update app.py
ebafa99 verified
raw
history blame
2.15 kB
import base64
import numpy as np
import cv2
import gradio as gr
from PIL import Image
from io import BytesIO
import spaces
@spaces.GPU
def crop_face(base64_image):
try:
# Decode the base64 image to an OpenCV format
img_data = base64.b64decode(base64_image)
np_arr = np.frombuffer(img_data, np.uint8)
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if image is None:
return "Image decoding failed. Check the input format."
# Load the pre-trained face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Convert the image to grayscale for face detection
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
if len(faces) == 0:
return "No faces detected in the image."
# Crop the first detected face
x, y, w, h = faces[0]
face_crop = image[y:y+h, x:x+w]
# Encode the cropped face to base64
_, buffer = cv2.imencode('.jpg', face_crop)
face_base64 = base64.b64encode(buffer).decode('utf-8')
return face_base64
except Exception as e:
return f"An error occurred: {str(e)}"
@spaces.GPU
def image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
# Define the Gradio interfaces
base64_converter_interface = gr.Interface(
fn=image_to_base64,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(),
title="Image to Base64 Encoder",
description="Upload an image to convert it to a base64 encoded string."
)
face_crop_interface = gr.Interface(
fn=crop_face,
inputs=gr.Textbox(),
outputs="text",
title="Face Cropper",
description="Input a base64 encoded image to get a base64 encoded cropped face."
)
if __name__ == "__main__":
gr.TabbedInterface([base64_converter_interface, face_crop_interface], ["Convert to Base64", "Crop Face"]).launch(share=True)