user-agent commited on
Commit
c52bc1e
·
verified ·
1 Parent(s): c0766d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -25
app.py CHANGED
@@ -6,40 +6,44 @@ import gradio as gr
6
  from PIL import Image
7
  from io import BytesIO
8
 
 
9
  @spaces.GPU
10
  def crop_face(base64_image):
11
- # Decode the base64 image
12
- img_data = base64.b64decode(base64_image)
13
- np_arr = np.frombuffer(img_data, np.uint8)
14
- image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
 
 
 
 
15
 
16
- if image is None:
17
- print("Could not decode the image")
18
- return None
 
 
19
 
20
- # Load the pre-trained face detector
21
- face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
22
 
23
- # Convert the image to grayscale
24
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 
25
 
26
- # Detect faces in the image
27
- faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
 
28
 
29
- # If no faces are detected, return None
30
- if len(faces) == 0:
31
- print("No faces found")
32
- return None
33
 
34
- # Crop the first face found
35
- x, y, w, h = faces[0]
36
- face_crop = image[y:y+h, x:x+w]
37
 
38
- # Encode the cropped face to base64
39
- _, buffer = cv2.imencode('.jpg', face_crop)
40
- face_base64 = base64.b64encode(buffer).decode('utf-8')
41
 
42
- return face_base64
43
 
44
  def image_to_base64(image):
45
  # Convert PIL Image to Bytes
@@ -66,4 +70,4 @@ base64_converter_interface = gr.Interface(
66
  )
67
 
68
  if __name__ == "__main__":
69
- gr.TabbedInterface([face_crop_interface, base64_converter_interface], ["Crop Face", "Convert to Base64"]).launch(share=True)
 
6
  from PIL import Image
7
  from io import BytesIO
8
 
9
+ @spaces.GPU
10
  @spaces.GPU
11
  def crop_face(base64_image):
12
+ try:
13
+ # Decode the base64 image
14
+ img_data = base64.b64decode(base64_image)
15
+ np_arr = np.frombuffer(img_data, np.uint8)
16
+ image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
17
+
18
+ if image is None:
19
+ return "Could not decode the image or no data in buffer"
20
 
21
+ # Load the pre-trained face detector
22
+ face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
23
+
24
+ # Convert the image to grayscale
25
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
26
 
27
+ # Detect faces in the image
28
+ faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
29
 
30
+ # If no faces are detected, return message
31
+ if len(faces) == 0:
32
+ return "No faces found"
33
 
34
+ # Crop the first face found
35
+ x, y, w, h = faces[0]
36
+ face_crop = image[y:y+h, x:x+w]
37
 
38
+ # Encode the cropped face to base64
39
+ _, buffer = cv2.imencode('.jpg', face_crop)
40
+ face_base64 = base64.b64encode(buffer).decode('utf-8')
 
41
 
42
+ return face_base64
 
 
43
 
44
+ except Exception as e:
45
+ return f"An error occurred: {str(e)}"
 
46
 
 
47
 
48
  def image_to_base64(image):
49
  # Convert PIL Image to Bytes
 
70
  )
71
 
72
  if __name__ == "__main__":
73
+ gr.TabbedInterface([face_crop_interface, base64_converter_interface], ["Crop Face", "Convert to Base64"]).launch()