Spaces:
Sleeping
Sleeping
import spaces | |
import base64 | |
import requests | |
import numpy as np | |
import face_recognition | |
import gradio as gr | |
from io import BytesIO | |
def get_face_embedding(image_input): | |
# Check if the input is a URL | |
if isinstance(image_input, str) and (image_input.startswith("http://") or image_input.startswith("https://")): | |
response = requests.get(image_input) | |
image = face_recognition.load_image_file(BytesIO(response.content)) | |
else: | |
# Assume input is a base64 encoded string | |
if ',' in image_input: | |
image_input = image_input.split(',')[1] # Remove the prefix | |
img_data = base64.b64decode(image_input) | |
image = face_recognition.load_image_file(BytesIO(img_data)) | |
# Get the face encodings for all faces in the image | |
face_encodings = face_recognition.face_encodings(image) | |
# If no faces are detected, return an empty list | |
if not face_encodings: | |
return [] | |
# Return the first face encoding as a list | |
return face_encodings[0].tolist() | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=get_face_embedding, | |
inputs="text", | |
outputs="json", | |
title="Face Embedding Extractor", | |
description="Input a base64 encoded image or an image link to get a 128-dimensional face embedding vector. If no face is detected, an empty list is returned." | |
) | |
if __name__ == "__main__": | |
interface.launch(share=True) | |