import spaces import base64 import numpy as np import face_recognition import gradio as gr from io import BytesIO @spaces.GPU def get_face_embedding(base64_image): # Decode the base64 image img_data = base64.b64decode(base64_image) np_arr = np.frombuffer(img_data, np.uint8) image = face_recognition.load_image_file(BytesIO(img_data)) # Get the face encodings for all faces in the image face_encodings = face_recognition.face_encodings(image) # If no faces are detected, return an empty list if not face_encodings: return [] # Return the first face encoding as a list return face_encodings[0].tolist() # Define the Gradio interface interface = gr.Interface( fn=get_face_embedding, inputs="text", outputs="json", title="Face Embedding Extractor", description="Input a base64 encoded image to get a 128-dimensional face embedding vector. If no face is detected, an empty list is returned." ) if __name__ == "__main__": interface.launch(share=True)