# app.py import streamlit as st from transformers import pipeline # Load the summarization pipeline with the specified model pipe = pipeline("summarization", model="Yihui/t5-small-text-summary-generation") # Set the title of the app st.title("Summary Generator") #st.markdown("
Developed by Usman
", unsafe_allow_html=True) st.markdown("Based on Hugging Face Model
", unsafe_allow_html=True) st.markdown("Tokens min_length=30 & max_length=150
", unsafe_allow_html=True) # Create a text area for user input input_text = st.text_area("Enter the text you want to get summarize:", height=200) # Create a button to trigger the summarization if st.button("Summarize"): if input_text: # Generate the summary summary = pipe(input_text, max_length=150, min_length=30, do_sample=False) # Display the summarized text st.subheader("Summary:") st.write(summary[0]['summary_text']) else: st.error("Please enter some text to summarize.")