Spaces:
Runtime error
Runtime error
File size: 6,966 Bytes
1f4f7c2 2a5ca46 1f4f7c2 281f2f2 1f4f7c2 5119610 2a5ca46 fd2259a 1f4f7c2 281f2f2 1f4f7c2 2a5ca46 1f4f7c2 2a5ca46 1f4f7c2 2a5ca46 1f4f7c2 2a5ca46 1f4f7c2 2a5ca46 1f4f7c2 2a5ca46 1f4f7c2 2a5ca46 1f4f7c2 2a5ca46 1f4f7c2 d6553a2 14e8dbc d6553a2 14e8dbc d6553a2 a78d902 d6553a2 a78d902 369f6d3 d6553a2 a78d902 d6553a2 5119610 04b6719 d6553a2 5119610 04b6719 d6553a2 5119610 04b6719 5119610 04b6719 5119610 d6553a2 1f4f7c2 2a5ca46 281f2f2 2a5ca46 281f2f2 1f4f7c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import torch
from threading import Thread
from typing import Iterator
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """\
# Llama 3.2 1B Instruct
Llama 3.2 1B is Meta's latest iteration of open LLMs.
This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following.
For more details, please check [our post](https://huggingface.co/blog/llama32).
"""
# Model setup
model_id = "ussipan/SipanGPT-0.3-Llama-3.2-1B-GGUF"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
def generate(
message: str,
chat_history: list,
max_new_tokens: int = 1024,
temperature: float = 0.6,
) -> Iterator[str]:
conversation = chat_history + [{"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
timeout=20.0,
skip_prompt=True,
skip_special_tokens=True
)
generation_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
do_sample=True,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
conversation.append({"role": "assistant", "content": ""})
output = []
for text in streamer:
output.append(text)
conversation[-1]["content"] = "".join(output)
yield "", conversation
def handle_like(data: gr.LikeData):
print(f"El mensaje {data.index} fue puntuado como {'bueno' if data.liked else 'malo'}.")
class SipanGPTTheme(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.Color(
name="custom_green",
c50="#f0fde4",
c100="#e1fbc8",
c200="#c3f789",
c300="#a5f34a",
c400="#7dfa00", # primary color
c500="#5ef000",
c600="#4cc700",
c700="#39a000",
c800="#2b7900",
c900="#1d5200",
c950="#102e00",
),
secondary_hue: colors.Color | str = colors.Color(
name="custom_secondary_green",
c50="#edfce0",
c100="#dbf9c1",
c200="#b7f583",
c300="#93f145",
c400="#5fed00", # secondary color
c500="#4ed400",
c600="#3fad00",
c700="#308700",
c800="#236100",
c900="#153b00",
c950="#0a1f00",
),
neutral_hue: colors.Color | str = colors.gray,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_md,
font: fonts.Font | str | list[fonts.Font | str] = [
fonts.GoogleFont("Exo 2"),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
font_mono: fonts.Font | str | list[fonts.Font | str] = [
fonts.GoogleFont("Fraunces"),
"ui-monospace",
"monospace",
],
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
self.set(
# Light mode settings
body_background_fill="*neutral_50",
body_text_color="*neutral_900",
color_accent_soft="*secondary_200",
button_primary_background_fill="*primary_600",
button_primary_background_fill_hover="*primary_500",
button_primary_text_color="*neutral_50",
block_title_text_color="*primary_600",
input_background_fill="*neutral_200",
input_border_color="*neutral_300",
input_placeholder_color="*neutral_500",
block_background_fill="*neutral_100",
block_label_background_fill="*primary_100",
block_label_text_color="*neutral_800",
checkbox_background_color="*neutral_200",
checkbox_border_color="*primary_500",
loader_color="*primary_500",
slider_color="*primary_500",
# Dark mode settings
body_background_fill_dark="*neutral_900",
body_text_color_dark="*neutral_50",
color_accent_soft_dark="*secondary_800",
button_primary_background_fill_dark="*primary_700",
button_primary_background_fill_hover_dark="*primary_600",
button_primary_text_color_dark="*neutral_950",
block_title_text_color_dark="*primary_400",
input_background_fill_dark="*neutral_800",
input_border_color_dark="*neutral_700",
input_placeholder_color_dark="*neutral_400",
block_background_fill_dark="*neutral_850",
block_label_background_fill_dark="*primary_900",
block_label_text_color_dark="*neutral_200",
checkbox_background_color_dark="*neutral_800",
checkbox_border_color_dark="*primary_600",
loader_color_dark="*primary_400",
slider_color_dark="*primary_600",
)
theme = SipanGPTTheme()
with gr.Blocks(theme=theme, fill_height=True) as demo:
chatbot = gr.Chatbot(
label="SipánGPT 0.3 Llama 3.2",
examples=[{"text": "Que carreras existen en la uss?"}, {"text": "Quien es el decano de la facultad de ingenieria?"}, {"text": "Que maestrias tiene la universidad?"}],
value=[],
show_label=True,
type="messages",
bubble_full_width=False,
placeholder = PLACEHOLDER,
)
msg = gr.Textbox(
show_label=False,
placeholder="Escribe tu pregunta aquí...",
scale=4
)
with gr.Row():
submit = gr.Button("Enviar")
clear = gr.ClearButton([msg, chatbot])
with gr.Accordion("Parameters", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.6,
step=0.1,
label="Temperatura",
)
max_new_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=1024,
step=1,
label="Máximo de nuevos Tokens",
)
msg.submit(generate, [msg, chatbot, max_new_tokens, temperature], [msg, chatbot])
submit.click(generate, [msg, chatbot, max_new_tokens, temperature], [msg, chatbot])
chatbot.like(handle_like)
demo.launch() |