Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,082 Bytes
dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 82925a6 dff4c96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import logging
import os
from typing import Tuple, List, Optional
from pathlib import Path
import shutil
import tempfile
import numpy as np
import cv2
import gradio as gr
from PIL import Image
from transformers import pipeline
from transformers.image_utils import load_image
import tqdm
# Configuration constants
CHECKPOINTS = [
"ustc-community/dfine_m_obj365",
"ustc-community/dfine_n_coco",
"ustc-community/dfine_s_coco",
"ustc-community/dfine_m_coco",
"ustc-community/dfine_l_coco",
"ustc-community/dfine_x_coco",
"ustc-community/dfine_s_obj365",
"ustc-community/dfine_l_obj365",
"ustc-community/dfine_x_obj365",
"ustc-community/dfine_s_obj2coco",
"ustc-community/dfine_m_obj2coco",
"ustc-community/dfine_l_obj2coco_e25",
"ustc-community/dfine_x_obj2coco",
]
MAX_NUM_FRAMES = 300
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
IMAGE_EXAMPLES = [
{"path": "./image.jpg", "use_url": False, "url": "", "label": "Local Image"},
{
"path": None,
"use_url": True,
"url": "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg",
"label": "Flickr Image",
},
]
VIDEO_EXAMPLES = [
{"path": "./video.mp4", "label": "Local Video"},
]
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
VIDEO_OUTPUT_DIR = Path("static/videos")
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
def detect_objects(
image: Optional[Image.Image],
checkpoint: str,
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
use_url: bool = False,
url: str = "",
) -> Tuple[
Optional[Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]],
gr.Markdown,
]:
if use_url and url:
try:
input_image = load_image(url)
except Exception as e:
logger.error(f"Failed to load image from URL {url}: {str(e)}")
return None, gr.Markdown(
f"**Error**: Failed to load image from URL: {str(e)}", visible=True
)
elif image is not None:
if not isinstance(image, Image.Image):
logger.error("Input image is not a PIL Image")
return None, gr.Markdown("**Error**: Invalid image format.", visible=True)
input_image = image
else:
return None, gr.Markdown(
"**Error**: Please provide an image or URL.", visible=True
)
try:
pipe = pipeline(
"object-detection",
model=checkpoint,
image_processor=checkpoint,
device="cpu",
)
except Exception as e:
logger.error(f"Failed to initialize model pipeline for {checkpoint}: {str(e)}")
return None, gr.Markdown(
f"**Error**: Failed to load model: {str(e)}", visible=True
)
results = pipe(input_image, threshold=confidence_threshold)
img_width, img_height = input_image.size
annotations = []
for result in results:
score = result["score"]
if score < confidence_threshold:
continue
label = f"{result['label']} ({score:.2f})"
box = result["box"]
# Validate and convert box to (xmin, ymin, xmax, ymax)
bbox_xmin = max(0, int(box["xmin"]))
bbox_ymin = max(0, int(box["ymin"]))
bbox_xmax = min(img_width, int(box["xmax"]))
bbox_ymax = min(img_height, int(box["ymax"]))
if bbox_xmax <= bbox_xmin or bbox_ymax <= bbox_ymin:
continue
bounding_box = (bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax)
annotations.append((bounding_box, label))
if not annotations:
return (input_image, []), gr.Markdown(
"**Warning**: No objects detected above the confidence threshold. Try lowering the threshold.",
visible=True,
)
return (input_image, annotations), gr.Markdown(visible=False)
def annotate_frame(
image: Image.Image, annotations: List[Tuple[Tuple[int, int, int, int], str]]
) -> np.ndarray:
image_np = np.array(image)
image_bgr = image_np[:, :, ::-1].copy() # RGB to BGR
for (xmin, ymin, xmax, ymax), label in annotations:
cv2.rectangle(image_bgr, (xmin, ymin), (xmax, ymax), (255, 255, 255), 2)
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
cv2.rectangle(
image_bgr,
(xmin, ymin - text_size[1] - 4),
(xmin + text_size[0], ymin),
(255, 255, 255),
-1,
)
cv2.putText(
image_bgr,
label,
(xmin, ymin - 4),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 0),
1,
)
return image_bgr
def process_video(
video_path: str,
checkpoint: str,
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Tuple[Optional[str], gr.Markdown]:
if not video_path or not os.path.isfile(video_path):
logger.error(f"Invalid video path: {video_path}")
return None, gr.Markdown(
"**Error**: Please provide a valid video file.", visible=True
)
ext = os.path.splitext(video_path)[1].lower()
if ext not in ALLOWED_VIDEO_EXTENSIONS:
logger.error(f"Unsupported video format: {ext}")
return None, gr.Markdown(
f"**Error**: Unsupported video format. Use MP4, AVI, or MOV.", visible=True
)
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
logger.error(f"Failed to open video: {video_path}")
return None, gr.Markdown(
"**Error**: Failed to open video file.", visible=True
)
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = cap.get(cv2.CAP_PROP_FPS)
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Use H.264 codec for browser compatibility
fourcc = cv2.VideoWriter_fourcc(*"H264")
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
writer = cv2.VideoWriter(temp_file.name, fourcc, fps, (width, height))
if not writer.isOpened():
logger.error("Failed to initialize video writer")
cap.release()
temp_file.close()
os.unlink(temp_file.name)
return None, gr.Markdown(
"**Error**: Failed to initialize video writer.", visible=True
)
frame_count = 0
for _ in tqdm.tqdm(
range(min(MAX_NUM_FRAMES, num_frames)), desc="Processing video"
):
ok, frame = cap.read()
if not ok:
break
rgb_frame = frame[:, :, ::-1] # BGR to RGB
pil_image = Image.fromarray(rgb_frame)
(annotated_image, annotations), _ = detect_objects(
pil_image, checkpoint, confidence_threshold, use_url=False, url=""
)
if annotated_image is None:
continue
annotated_frame = annotate_frame(annotated_image, annotations)
writer.write(annotated_frame)
frame_count += 1
writer.release()
cap.release()
if frame_count == 0:
logger.warning("No valid frames processed in video")
temp_file.close()
os.unlink(temp_file.name)
return None, gr.Markdown(
"**Warning**: No valid frames processed. Try a different video or threshold.",
visible=True,
)
temp_file.close()
# Copy to persistent directory for Gradio access
output_filename = f"output_{os.path.basename(temp_file.name)}"
output_path = VIDEO_OUTPUT_DIR / output_filename
shutil.copy(temp_file.name, output_path)
os.unlink(temp_file.name) # Remove temporary file
logger.info(f"Video saved to {output_path}")
return str(output_path), gr.Markdown(visible=False)
except Exception as e:
logger.error(f"Video processing failed: {str(e)}")
if "temp_file" in locals():
temp_file.close()
if os.path.exists(temp_file.name):
os.unlink(temp_file.name)
return None, gr.Markdown(
f"**Error**: Video processing failed: {str(e)}", visible=True
)
def create_image_inputs() -> List[gr.components.Component]:
return [
gr.Image(
label="Upload Image",
type="pil",
sources=["upload", "webcam"],
interactive=True,
elem_classes="input-component",
),
gr.Checkbox(label="Use Image URL Instead", value=False),
gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
visible=False,
elem_classes="input-component",
),
gr.Dropdown(
choices=CHECKPOINTS,
label="Select Model Checkpoint",
value=DEFAULT_CHECKPOINT,
elem_classes="input-component",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=DEFAULT_CONFIDENCE_THRESHOLD,
step=0.1,
label="Confidence Threshold",
elem_classes="input-component",
),
]
def create_video_inputs() -> List[gr.components.Component]:
return [
gr.Video(
label="Upload Video",
sources=["upload"],
interactive=True,
format="mp4", # Ensure MP4 format
elem_classes="input-component",
),
gr.Dropdown(
choices=CHECKPOINTS,
label="Select Model Checkpoint",
value=DEFAULT_CHECKPOINT,
elem_classes="input-component",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=DEFAULT_CONFIDENCE_THRESHOLD,
step=0.1,
label="Confidence Threshold",
elem_classes="input-component",
),
]
def create_button_row(is_image: bool) -> List[gr.Button]:
prefix = "Image" if is_image else "Video"
return [
gr.Button(
f"{prefix} Detect Objects", variant="primary", elem_classes="action-button"
),
gr.Button(f"{prefix} Clear", variant="secondary", elem_classes="action-button"),
]
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Real-Time Object Detection Demo
Experience state-of-the-art object detection with USTC's Dfine models. Upload an image or video,
provide a URL, or try an example below. Select a model and adjust the confidence threshold to see detections in real time!
""",
elem_classes="header-text",
)
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1, min_width=300):
with gr.Group():
(
image_input,
use_url,
url_input,
image_checkpoint,
image_confidence_threshold,
) = create_image_inputs()
image_detect_button, image_clear_button = create_button_row(
is_image=True
)
with gr.Column(scale=2):
image_output = gr.AnnotatedImage(
label="Detection Results",
show_label=True,
color_map=None,
elem_classes="output-component",
)
image_error_message = gr.Markdown(
visible=False, elem_classes="error-text"
)
gr.Examples(
examples=[
[
example["path"],
example["use_url"],
example["url"],
DEFAULT_CHECKPOINT,
DEFAULT_CONFIDENCE_THRESHOLD,
]
for example in IMAGE_EXAMPLES
],
inputs=[
image_input,
use_url,
url_input,
image_checkpoint,
image_confidence_threshold,
],
outputs=[image_output, image_error_message],
fn=detect_objects,
cache_examples=False,
label="Select an image example to populate inputs",
)
with gr.Tab("Video"):
gr.Markdown(
f"The input video will be truncated to {MAX_NUM_FRAMES} frames."
)
with gr.Row():
with gr.Column(scale=1, min_width=300):
with gr.Group():
video_input, video_checkpoint, video_confidence_threshold = (
create_video_inputs()
)
video_detect_button, video_clear_button = create_button_row(
is_image=False
)
with gr.Column(scale=2):
video_output = gr.Video(
label="Detection Results",
format="mp4", # Explicit MP4 format
elem_classes="output-component",
)
video_error_message = gr.Markdown(
visible=False, elem_classes="error-text"
)
gr.Examples(
examples=[
[example["path"], DEFAULT_CHECKPOINT, DEFAULT_CONFIDENCE_THRESHOLD]
for example in VIDEO_EXAMPLES
],
inputs=[video_input, video_checkpoint, video_confidence_threshold],
outputs=[video_output, video_error_message],
fn=process_video,
cache_examples=False,
label="Select a video example to populate inputs",
)
# Dynamic visibility for URL input
use_url.change(
fn=lambda x: gr.update(visible=x),
inputs=use_url,
outputs=url_input,
)
# Image clear button
image_clear_button.click(
fn=lambda: (
None,
False,
"",
DEFAULT_CHECKPOINT,
DEFAULT_CONFIDENCE_THRESHOLD,
None,
gr.Markdown(visible=False),
),
outputs=[
image_input,
use_url,
url_input,
image_checkpoint,
image_confidence_threshold,
image_output,
image_error_message,
],
)
# Video clear button
video_clear_button.click(
fn=lambda: (
None,
DEFAULT_CHECKPOINT,
DEFAULT_CONFIDENCE_THRESHOLD,
None,
gr.Markdown(visible=False),
),
outputs=[
video_input,
video_checkpoint,
video_confidence_threshold,
video_output,
video_error_message,
],
)
# Image detect button
image_detect_button.click(
fn=detect_objects,
inputs=[
image_input,
image_checkpoint,
image_confidence_threshold,
use_url,
url_input,
],
outputs=[image_output, image_error_message],
)
# Video detect button
video_detect_button.click(
fn=process_video,
inputs=[video_input, video_checkpoint, video_confidence_threshold],
outputs=[video_output, video_error_message],
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|