File size: 16,082 Bytes
dff4c96
 
 
 
 
 
 
 
82925a6
dff4c96
82925a6
 
dff4c96
82925a6
dff4c96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82925a6
dff4c96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82925a6
 
dff4c96
 
 
 
 
 
 
 
 
 
82925a6
dff4c96
 
 
 
 
 
 
82925a6
dff4c96
 
 
82925a6
 
dff4c96
 
 
82925a6
dff4c96
 
 
 
 
 
 
 
 
 
 
 
82925a6
dff4c96
82925a6
 
 
 
 
 
 
 
 
dff4c96
 
 
 
 
 
82925a6
dff4c96
82925a6
 
 
 
 
dff4c96
82925a6
 
 
 
dff4c96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82925a6
 
 
 
 
dff4c96
 
82925a6
dff4c96
82925a6
dff4c96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82925a6
dff4c96
 
82925a6
dff4c96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82925a6
 
 
 
 
 
 
 
 
dff4c96
 
82925a6
dff4c96
 
 
 
 
 
 
82925a6
 
 
 
 
dff4c96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82925a6
 
 
dff4c96
 
82925a6
dff4c96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82925a6
 
 
dff4c96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import logging
import os
from typing import Tuple, List, Optional
from pathlib import Path
import shutil
import tempfile
import numpy as np
import cv2
import gradio as gr
from PIL import Image
from transformers import pipeline
from transformers.image_utils import load_image
import tqdm

# Configuration constants
CHECKPOINTS = [
    "ustc-community/dfine_m_obj365",
    "ustc-community/dfine_n_coco",
    "ustc-community/dfine_s_coco",
    "ustc-community/dfine_m_coco",
    "ustc-community/dfine_l_coco",
    "ustc-community/dfine_x_coco",
    "ustc-community/dfine_s_obj365",
    "ustc-community/dfine_l_obj365",
    "ustc-community/dfine_x_obj365",
    "ustc-community/dfine_s_obj2coco",
    "ustc-community/dfine_m_obj2coco",
    "ustc-community/dfine_l_obj2coco_e25",
    "ustc-community/dfine_x_obj2coco",
]
MAX_NUM_FRAMES = 300
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
IMAGE_EXAMPLES = [
    {"path": "./image.jpg", "use_url": False, "url": "", "label": "Local Image"},
    {
        "path": None,
        "use_url": True,
        "url": "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg",
        "label": "Flickr Image",
    },
]
VIDEO_EXAMPLES = [
    {"path": "./video.mp4", "label": "Local Video"},
]
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

VIDEO_OUTPUT_DIR = Path("static/videos")
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)


def detect_objects(
    image: Optional[Image.Image],
    checkpoint: str,
    confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
    use_url: bool = False,
    url: str = "",
) -> Tuple[
    Optional[Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]],
    gr.Markdown,
]:
    if use_url and url:
        try:
            input_image = load_image(url)
        except Exception as e:
            logger.error(f"Failed to load image from URL {url}: {str(e)}")
            return None, gr.Markdown(
                f"**Error**: Failed to load image from URL: {str(e)}", visible=True
            )
    elif image is not None:
        if not isinstance(image, Image.Image):
            logger.error("Input image is not a PIL Image")
            return None, gr.Markdown("**Error**: Invalid image format.", visible=True)
        input_image = image
    else:
        return None, gr.Markdown(
            "**Error**: Please provide an image or URL.", visible=True
        )

    try:
        pipe = pipeline(
            "object-detection",
            model=checkpoint,
            image_processor=checkpoint,
            device="cpu",
        )
    except Exception as e:
        logger.error(f"Failed to initialize model pipeline for {checkpoint}: {str(e)}")
        return None, gr.Markdown(
            f"**Error**: Failed to load model: {str(e)}", visible=True
        )

    results = pipe(input_image, threshold=confidence_threshold)
    img_width, img_height = input_image.size

    annotations = []
    for result in results:
        score = result["score"]
        if score < confidence_threshold:
            continue
        label = f"{result['label']} ({score:.2f})"
        box = result["box"]
        # Validate and convert box to (xmin, ymin, xmax, ymax)
        bbox_xmin = max(0, int(box["xmin"]))
        bbox_ymin = max(0, int(box["ymin"]))
        bbox_xmax = min(img_width, int(box["xmax"]))
        bbox_ymax = min(img_height, int(box["ymax"]))
        if bbox_xmax <= bbox_xmin or bbox_ymax <= bbox_ymin:
            continue
        bounding_box = (bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax)
        annotations.append((bounding_box, label))

    if not annotations:
        return (input_image, []), gr.Markdown(
            "**Warning**: No objects detected above the confidence threshold. Try lowering the threshold.",
            visible=True,
        )

    return (input_image, annotations), gr.Markdown(visible=False)


def annotate_frame(
    image: Image.Image, annotations: List[Tuple[Tuple[int, int, int, int], str]]
) -> np.ndarray:
    image_np = np.array(image)
    image_bgr = image_np[:, :, ::-1].copy()  # RGB to BGR

    for (xmin, ymin, xmax, ymax), label in annotations:
        cv2.rectangle(image_bgr, (xmin, ymin), (xmax, ymax), (255, 255, 255), 2)
        text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
        cv2.rectangle(
            image_bgr,
            (xmin, ymin - text_size[1] - 4),
            (xmin + text_size[0], ymin),
            (255, 255, 255),
            -1,
        )
        cv2.putText(
            image_bgr,
            label,
            (xmin, ymin - 4),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.5,
            (0, 0, 0),
            1,
        )

    return image_bgr


def process_video(
    video_path: str,
    checkpoint: str,
    confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Tuple[Optional[str], gr.Markdown]:
    if not video_path or not os.path.isfile(video_path):
        logger.error(f"Invalid video path: {video_path}")
        return None, gr.Markdown(
            "**Error**: Please provide a valid video file.", visible=True
        )

    ext = os.path.splitext(video_path)[1].lower()
    if ext not in ALLOWED_VIDEO_EXTENSIONS:
        logger.error(f"Unsupported video format: {ext}")
        return None, gr.Markdown(
            f"**Error**: Unsupported video format. Use MP4, AVI, or MOV.", visible=True
        )

    try:
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            logger.error(f"Failed to open video: {video_path}")
            return None, gr.Markdown(
                "**Error**: Failed to open video file.", visible=True
            )

        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        fps = cap.get(cv2.CAP_PROP_FPS)
        num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

        # Use H.264 codec for browser compatibility
        fourcc = cv2.VideoWriter_fourcc(*"H264")
        temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
        writer = cv2.VideoWriter(temp_file.name, fourcc, fps, (width, height))
        if not writer.isOpened():
            logger.error("Failed to initialize video writer")
            cap.release()
            temp_file.close()
            os.unlink(temp_file.name)
            return None, gr.Markdown(
                "**Error**: Failed to initialize video writer.", visible=True
            )

        frame_count = 0
        for _ in tqdm.tqdm(
            range(min(MAX_NUM_FRAMES, num_frames)), desc="Processing video"
        ):
            ok, frame = cap.read()
            if not ok:
                break
            rgb_frame = frame[:, :, ::-1]  # BGR to RGB
            pil_image = Image.fromarray(rgb_frame)
            (annotated_image, annotations), _ = detect_objects(
                pil_image, checkpoint, confidence_threshold, use_url=False, url=""
            )
            if annotated_image is None:
                continue
            annotated_frame = annotate_frame(annotated_image, annotations)
            writer.write(annotated_frame)
            frame_count += 1

        writer.release()
        cap.release()

        if frame_count == 0:
            logger.warning("No valid frames processed in video")
            temp_file.close()
            os.unlink(temp_file.name)
            return None, gr.Markdown(
                "**Warning**: No valid frames processed. Try a different video or threshold.",
                visible=True,
            )

        temp_file.close()

        # Copy to persistent directory for Gradio access
        output_filename = f"output_{os.path.basename(temp_file.name)}"
        output_path = VIDEO_OUTPUT_DIR / output_filename
        shutil.copy(temp_file.name, output_path)
        os.unlink(temp_file.name)  # Remove temporary file
        logger.info(f"Video saved to {output_path}")

        return str(output_path), gr.Markdown(visible=False)

    except Exception as e:
        logger.error(f"Video processing failed: {str(e)}")
        if "temp_file" in locals():
            temp_file.close()
            if os.path.exists(temp_file.name):
                os.unlink(temp_file.name)
        return None, gr.Markdown(
            f"**Error**: Video processing failed: {str(e)}", visible=True
        )


def create_image_inputs() -> List[gr.components.Component]:
    return [
        gr.Image(
            label="Upload Image",
            type="pil",
            sources=["upload", "webcam"],
            interactive=True,
            elem_classes="input-component",
        ),
        gr.Checkbox(label="Use Image URL Instead", value=False),
        gr.Textbox(
            label="Image URL",
            placeholder="https://example.com/image.jpg",
            visible=False,
            elem_classes="input-component",
        ),
        gr.Dropdown(
            choices=CHECKPOINTS,
            label="Select Model Checkpoint",
            value=DEFAULT_CHECKPOINT,
            elem_classes="input-component",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=DEFAULT_CONFIDENCE_THRESHOLD,
            step=0.1,
            label="Confidence Threshold",
            elem_classes="input-component",
        ),
    ]


def create_video_inputs() -> List[gr.components.Component]:
    return [
        gr.Video(
            label="Upload Video",
            sources=["upload"],
            interactive=True,
            format="mp4",  # Ensure MP4 format
            elem_classes="input-component",
        ),
        gr.Dropdown(
            choices=CHECKPOINTS,
            label="Select Model Checkpoint",
            value=DEFAULT_CHECKPOINT,
            elem_classes="input-component",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=DEFAULT_CONFIDENCE_THRESHOLD,
            step=0.1,
            label="Confidence Threshold",
            elem_classes="input-component",
        ),
    ]


def create_button_row(is_image: bool) -> List[gr.Button]:
    prefix = "Image" if is_image else "Video"
    return [
        gr.Button(
            f"{prefix} Detect Objects", variant="primary", elem_classes="action-button"
        ),
        gr.Button(f"{prefix} Clear", variant="secondary", elem_classes="action-button"),
    ]


# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # Real-Time Object Detection Demo
        Experience state-of-the-art object detection with USTC's Dfine models. Upload an image or video,
        provide a URL, or try an example below. Select a model and adjust the confidence threshold to see detections in real time!
        """,
        elem_classes="header-text",
    )

    with gr.Tabs():
        with gr.Tab("Image"):
            with gr.Row():
                with gr.Column(scale=1, min_width=300):
                    with gr.Group():
                        (
                            image_input,
                            use_url,
                            url_input,
                            image_checkpoint,
                            image_confidence_threshold,
                        ) = create_image_inputs()
                        image_detect_button, image_clear_button = create_button_row(
                            is_image=True
                        )
                with gr.Column(scale=2):
                    image_output = gr.AnnotatedImage(
                        label="Detection Results",
                        show_label=True,
                        color_map=None,
                        elem_classes="output-component",
                    )
                    image_error_message = gr.Markdown(
                        visible=False, elem_classes="error-text"
                    )

            gr.Examples(
                examples=[
                    [
                        example["path"],
                        example["use_url"],
                        example["url"],
                        DEFAULT_CHECKPOINT,
                        DEFAULT_CONFIDENCE_THRESHOLD,
                    ]
                    for example in IMAGE_EXAMPLES
                ],
                inputs=[
                    image_input,
                    use_url,
                    url_input,
                    image_checkpoint,
                    image_confidence_threshold,
                ],
                outputs=[image_output, image_error_message],
                fn=detect_objects,
                cache_examples=False,
                label="Select an image example to populate inputs",
            )

        with gr.Tab("Video"):
            gr.Markdown(
                f"The input video will be truncated to {MAX_NUM_FRAMES} frames."
            )
            with gr.Row():
                with gr.Column(scale=1, min_width=300):
                    with gr.Group():
                        video_input, video_checkpoint, video_confidence_threshold = (
                            create_video_inputs()
                        )
                        video_detect_button, video_clear_button = create_button_row(
                            is_image=False
                        )
                with gr.Column(scale=2):
                    video_output = gr.Video(
                        label="Detection Results",
                        format="mp4",  # Explicit MP4 format
                        elem_classes="output-component",
                    )
                    video_error_message = gr.Markdown(
                        visible=False, elem_classes="error-text"
                    )

            gr.Examples(
                examples=[
                    [example["path"], DEFAULT_CHECKPOINT, DEFAULT_CONFIDENCE_THRESHOLD]
                    for example in VIDEO_EXAMPLES
                ],
                inputs=[video_input, video_checkpoint, video_confidence_threshold],
                outputs=[video_output, video_error_message],
                fn=process_video,
                cache_examples=False,
                label="Select a video example to populate inputs",
            )

    # Dynamic visibility for URL input
    use_url.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_url,
        outputs=url_input,
    )

    # Image clear button
    image_clear_button.click(
        fn=lambda: (
            None,
            False,
            "",
            DEFAULT_CHECKPOINT,
            DEFAULT_CONFIDENCE_THRESHOLD,
            None,
            gr.Markdown(visible=False),
        ),
        outputs=[
            image_input,
            use_url,
            url_input,
            image_checkpoint,
            image_confidence_threshold,
            image_output,
            image_error_message,
        ],
    )

    # Video clear button
    video_clear_button.click(
        fn=lambda: (
            None,
            DEFAULT_CHECKPOINT,
            DEFAULT_CONFIDENCE_THRESHOLD,
            None,
            gr.Markdown(visible=False),
        ),
        outputs=[
            video_input,
            video_checkpoint,
            video_confidence_threshold,
            video_output,
            video_error_message,
        ],
    )

    # Image detect button
    image_detect_button.click(
        fn=detect_objects,
        inputs=[
            image_input,
            image_checkpoint,
            image_confidence_threshold,
            use_url,
            url_input,
        ],
        outputs=[image_output, image_error_message],
    )

    # Video detect button
    video_detect_button.click(
        fn=process_video,
        inputs=[video_input, video_checkpoint, video_confidence_threshold],
        outputs=[video_output, video_error_message],
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()