Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import tqdm | |
import uuid | |
import logging | |
import torch | |
import spaces | |
import numpy as np | |
import gradio as gr | |
import imageio.v3 as iio | |
import supervision as sv | |
from pathlib import Path | |
from functools import lru_cache | |
from typing import List, Optional, Tuple | |
from PIL import Image | |
from transformers import AutoModelForObjectDetection, AutoImageProcessor | |
from transformers.image_utils import load_image | |
# Configuration constants | |
CHECKPOINTS = [ | |
"ustc-community/dfine_m_obj2coco", | |
"ustc-community/dfine_m_obj365", | |
"ustc-community/dfine_n_coco", | |
"ustc-community/dfine_s_coco", | |
"ustc-community/dfine_m_coco", | |
"ustc-community/dfine_l_coco", | |
"ustc-community/dfine_x_coco", | |
"ustc-community/dfine_s_obj365", | |
"ustc-community/dfine_l_obj365", | |
"ustc-community/dfine_x_obj365", | |
"ustc-community/dfine_s_obj2coco", | |
"ustc-community/dfine_l_obj2coco_e25", | |
"ustc-community/dfine_x_obj2coco", | |
] | |
DEFAULT_CHECKPOINT = CHECKPOINTS[0] | |
DEFAULT_CONFIDENCE_THRESHOLD = 0.3 | |
TORCH_DTYPE = torch.float32 | |
# Image | |
IMAGE_EXAMPLES = [ | |
{"path": "./examples/images/tennis.jpg", "use_url": False, "url": "", "label": "Local Image"}, | |
{"path": "./examples/images/dogs.jpg", "use_url": False, "url": "", "label": "Local Image"}, | |
{"path": "./examples/images/nascar.jpg", "use_url": False, "url": "", "label": "Local Image"}, | |
{"path": "./examples/images/crossroad.jpg", "use_url": False, "url": "", "label": "Local Image"}, | |
{ | |
"path": None, | |
"use_url": True, | |
"url": "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg", | |
"label": "Flickr Image", | |
}, | |
] | |
# Video | |
MAX_NUM_FRAMES = 250 | |
BATCH_SIZE = 4 | |
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"} | |
VIDEO_OUTPUT_DIR = Path("static/videos") | |
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True) | |
VIDEO_EXAMPLES = [ | |
{"path": "./examples/videos/dogs_running.mp4", "label": "Local Video"}, | |
{"path": "./examples/videos/traffic.mp4", "label": "Local Video"}, | |
{"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video"}, | |
{"path": "./examples/videos/break_dance.mp4", "label": "Local Video"}, | |
] | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
def get_model_and_processor(checkpoint: str): | |
model = AutoModelForObjectDetection.from_pretrained(checkpoint, torch_dtype=TORCH_DTYPE) | |
image_processor = AutoImageProcessor.from_pretrained(checkpoint) | |
return model, image_processor | |
def detect_objects( | |
checkpoint: str, | |
images: List[np.ndarray] | np.ndarray, | |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD, | |
target_size: Optional[Tuple[int, int]] = None, | |
batch_size: int = BATCH_SIZE, | |
): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model, image_processor = get_model_and_processor(checkpoint) | |
model = model.to(device) | |
if isinstance(images, np.ndarray) and images.ndim == 4: | |
images = [x for x in images] # split video array into list of images | |
batches = [images[i:i + batch_size] for i in range(0, len(images), batch_size)] | |
results = [] | |
for batch in tqdm.tqdm(batches, desc="Processing frames"): | |
# preprocess images | |
inputs = image_processor(images=batch, return_tensors="pt") | |
inputs = inputs.to(device).to(TORCH_DTYPE) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# postprocess outputs | |
if target_size: | |
target_sizes = [target_size] * len(batch) | |
else: | |
target_sizes = [(image.shape[0], image.shape[1]) for image in batch] | |
batch_results = image_processor.post_process_object_detection( | |
outputs, target_sizes=target_sizes, threshold=confidence_threshold | |
) | |
results.extend(batch_results) | |
# move results to cpu | |
for i, result in enumerate(results): | |
results[i] = {k: v.cpu() for k, v in result.items()} | |
return results, model.config.id2label | |
def process_image( | |
checkpoint: str = DEFAULT_CHECKPOINT, | |
image: Optional[Image.Image] = None, | |
url: Optional[str] = None, | |
use_url: bool = False, | |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD, | |
): | |
if not use_url: | |
url = None | |
if (image is None) ^ bool(url): | |
raise ValueError(f"Either image or url must be provided, but not both.") | |
if url: | |
image = load_image(url) | |
results, id2label = detect_objects( | |
checkpoint=checkpoint, | |
images=[np.array(image)], | |
confidence_threshold=confidence_threshold, | |
) | |
result = results[0] # first image in batch (we have batch size 1) | |
annotations = [] | |
for label, score, box in zip(result["labels"], result["scores"], result["boxes"]): | |
text_label = id2label[label.item()] | |
formatted_label = f"{text_label} ({score:.2f})" | |
x_min, y_min, x_max, y_max = box.cpu().numpy().round().astype(int) | |
x_min = max(0, x_min) | |
y_min = max(0, y_min) | |
x_max = min(image.width - 1, x_max) | |
y_max = min(image.height - 1, y_max) | |
annotations.append(((x_min, y_min, x_max, y_max), formatted_label)) | |
return (image, annotations) | |
def get_target_size(image_height, image_width, max_size: int): | |
if image_height < max_size and image_width < max_size: | |
new_height, new_width = image_width, image_height | |
elif image_height > image_width: | |
new_height = max_size | |
new_width = int(image_width * max_size / image_height) | |
else: | |
new_width = max_size | |
new_height = int(image_height * max_size / image_width) | |
# make even (for video codec compatibility) | |
new_height = new_height // 2 * 2 | |
new_width = new_width // 2 * 2 | |
return new_width, new_height | |
def read_video_k_frames(video_path: str, k: int, read_every_i_frame: int = 1): | |
cap = cv2.VideoCapture(video_path) | |
frames = [] | |
i = 0 | |
progress_bar = tqdm.tqdm(total=k, desc="Reading frames") | |
while cap.isOpened() and len(frames) < k: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
if i % read_every_i_frame == 0: | |
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
progress_bar.update(1) | |
i += 1 | |
cap.release() | |
progress_bar.close() | |
return frames | |
def process_video( | |
video_path: str, | |
checkpoint: str, | |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD, | |
progress: gr.Progress = gr.Progress(track_tqdm=True), | |
) -> str: | |
if not video_path or not os.path.isfile(video_path): | |
raise ValueError(f"Invalid video path: {video_path}") | |
ext = os.path.splitext(video_path)[1].lower() | |
if ext not in ALLOWED_VIDEO_EXTENSIONS: | |
raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}") | |
video_info = sv.VideoInfo.from_video_path(video_path) | |
read_each_i_frame = video_info.fps // 25 | |
target_fps = video_info.fps / read_each_i_frame | |
target_width, target_height = get_target_size(video_info.height, video_info.width, 1080) | |
n_frames_to_read = min(MAX_NUM_FRAMES, video_info.total_frames // read_each_i_frame) | |
frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame) | |
frames = [cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_CUBIC) for frame in frames] | |
box_annotator = sv.BoxAnnotator(thickness=1) | |
label_annotator = sv.LabelAnnotator(text_scale=0.5) | |
results, id2label = detect_objects( | |
images=np.array(frames), | |
checkpoint=checkpoint, | |
confidence_threshold=confidence_threshold, | |
target_size=(target_height, target_width), | |
) | |
annotated_frames = [] | |
for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)): | |
detections = sv.Detections.from_transformers(result, id2label=id2label) | |
detections = detections.with_nms(threshold=0.95, class_agnostic=True) | |
annotated_frame = box_annotator.annotate(scene=frame, detections=detections) | |
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections) | |
annotated_frames.append(annotated_frame) | |
output_filename = os.path.join(VIDEO_OUTPUT_DIR, f"output_{uuid.uuid4()}.mp4") | |
iio.imwrite(output_filename, annotated_frames, fps=target_fps, codec="h264") | |
return output_filename | |
def create_image_inputs() -> List[gr.components.Component]: | |
return [ | |
gr.Image( | |
label="Upload Image", | |
type="pil", | |
sources=["upload", "webcam"], | |
interactive=True, | |
elem_classes="input-component", | |
), | |
gr.Checkbox(label="Use Image URL Instead", value=False), | |
gr.Textbox( | |
label="Image URL", | |
placeholder="https://example.com/image.jpg", | |
visible=False, | |
elem_classes="input-component", | |
), | |
gr.Dropdown( | |
choices=CHECKPOINTS, | |
label="Select Model Checkpoint", | |
value=DEFAULT_CHECKPOINT, | |
elem_classes="input-component", | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=DEFAULT_CONFIDENCE_THRESHOLD, | |
step=0.1, | |
label="Confidence Threshold", | |
elem_classes="input-component", | |
), | |
] | |
def create_video_inputs() -> List[gr.components.Component]: | |
return [ | |
gr.Video( | |
label="Upload Video", | |
sources=["upload"], | |
interactive=True, | |
format="mp4", # Ensure MP4 format | |
elem_classes="input-component", | |
), | |
gr.Dropdown( | |
choices=CHECKPOINTS, | |
label="Select Model Checkpoint", | |
value=DEFAULT_CHECKPOINT, | |
elem_classes="input-component", | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=DEFAULT_CONFIDENCE_THRESHOLD, | |
step=0.1, | |
label="Confidence Threshold", | |
elem_classes="input-component", | |
), | |
] | |
def create_button_row() -> List[gr.Button]: | |
return [ | |
gr.Button( | |
f"Detect Objects", variant="primary", elem_classes="action-button" | |
), | |
gr.Button(f"Clear", variant="secondary", elem_classes="action-button"), | |
] | |
# Gradio interface | |
with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
gr.Markdown( | |
""" | |
# Object Detection Demo | |
Experience state-of-the-art object detection with USTC's D-Fine models. | |
- **Image** and **Video** modes are supported. | |
- Select a model and adjust the confidence threshold to see detections! | |
""", | |
elem_classes="header-text", | |
) | |
with gr.Tabs(): | |
with gr.Tab("Image"): | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=300): | |
with gr.Group(): | |
( | |
image_input, | |
use_url, | |
url_input, | |
image_model_checkpoint, | |
image_confidence_threshold, | |
) = create_image_inputs() | |
image_detect_button, image_clear_button = create_button_row() | |
with gr.Column(scale=2): | |
image_output = gr.AnnotatedImage( | |
label="Detection Results", | |
show_label=True, | |
color_map=None, | |
elem_classes="output-component", | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
DEFAULT_CHECKPOINT, | |
example["path"], | |
example["url"], | |
example["use_url"], | |
DEFAULT_CONFIDENCE_THRESHOLD, | |
] | |
for example in IMAGE_EXAMPLES | |
], | |
inputs=[ | |
image_model_checkpoint, | |
image_input, | |
url_input, | |
use_url, | |
image_confidence_threshold, | |
], | |
outputs=[image_output], | |
fn=process_image, | |
label="Select an image example to populate inputs", | |
cache_examples=True, | |
cache_mode="lazy", | |
) | |
with gr.Tab("Video"): | |
gr.Markdown( | |
f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)." | |
) | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=300): | |
with gr.Group(): | |
video_input, video_checkpoint, video_confidence_threshold = create_video_inputs() | |
video_detect_button, video_clear_button = create_button_row() | |
with gr.Column(scale=2): | |
video_output = gr.Video( | |
label="Detection Results", | |
format="mp4", # Explicit MP4 format | |
elem_classes="output-component", | |
) | |
gr.Examples( | |
examples=[ | |
[example["path"], DEFAULT_CHECKPOINT, DEFAULT_CONFIDENCE_THRESHOLD] | |
for example in VIDEO_EXAMPLES | |
], | |
inputs=[video_input, video_checkpoint, video_confidence_threshold], | |
outputs=[video_output], | |
fn=process_video, | |
cache_examples=False, | |
label="Select a video example to populate inputs", | |
) | |
# Dynamic visibility for URL input | |
use_url.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_url, | |
outputs=url_input, | |
) | |
# Image clear button | |
image_clear_button.click( | |
fn=lambda: ( | |
None, | |
False, | |
"", | |
DEFAULT_CHECKPOINT, | |
DEFAULT_CONFIDENCE_THRESHOLD, | |
None, | |
), | |
outputs=[ | |
image_input, | |
use_url, | |
url_input, | |
image_model_checkpoint, | |
image_confidence_threshold, | |
image_output, | |
], | |
) | |
# Video clear button | |
video_clear_button.click( | |
fn=lambda: ( | |
None, | |
DEFAULT_CHECKPOINT, | |
DEFAULT_CONFIDENCE_THRESHOLD, | |
None, | |
), | |
outputs=[ | |
video_input, | |
video_checkpoint, | |
video_confidence_threshold, | |
video_output, | |
], | |
) | |
# Image detect button | |
image_detect_button.click( | |
fn=process_image, | |
inputs=[ | |
image_model_checkpoint, | |
image_input, | |
url_input, | |
use_url, | |
image_confidence_threshold, | |
], | |
outputs=[image_output], | |
) | |
# Video detect button | |
video_detect_button.click( | |
fn=process_video, | |
inputs=[video_input, video_checkpoint, video_confidence_threshold], | |
outputs=[video_output], | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |