Spaces:
Running
on
Zero
Running
on
Zero
Batched vidoe processing + supervision
Browse files- app.py +180 -203
- image.jpg → examples/images/crossroad.jpg +0 -0
- video.mp4 → examples/videos/break_dance.mp4 +0 -0
- examples/videos/fast_and_furious.mp4 +3 -0
- examples/videos/traffic.mp4 +3 -0
- packages.txt +1 -0
- requirements.txt +5 -2
app.py
CHANGED
@@ -1,19 +1,27 @@
|
|
1 |
-
import logging
|
2 |
import os
|
3 |
-
|
4 |
-
|
5 |
import shutil
|
6 |
import tempfile
|
7 |
-
import
|
8 |
-
import
|
|
|
|
|
|
|
9 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
10 |
from PIL import Image
|
11 |
-
from transformers import
|
12 |
from transformers.image_utils import load_image
|
13 |
-
|
14 |
|
15 |
# Configuration constants
|
16 |
CHECKPOINTS = [
|
|
|
17 |
"ustc-community/dfine_m_obj365",
|
18 |
"ustc-community/dfine_n_coco",
|
19 |
"ustc-community/dfine_s_coco",
|
@@ -24,15 +32,17 @@ CHECKPOINTS = [
|
|
24 |
"ustc-community/dfine_l_obj365",
|
25 |
"ustc-community/dfine_x_obj365",
|
26 |
"ustc-community/dfine_s_obj2coco",
|
27 |
-
"ustc-community/dfine_m_obj2coco",
|
28 |
"ustc-community/dfine_l_obj2coco_e25",
|
29 |
"ustc-community/dfine_x_obj2coco",
|
30 |
]
|
31 |
-
MAX_NUM_FRAMES = 300
|
32 |
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
|
33 |
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
|
|
|
|
|
|
|
|
|
34 |
IMAGE_EXAMPLES = [
|
35 |
-
{"path": "./
|
36 |
{
|
37 |
"path": None,
|
38 |
"use_url": True,
|
@@ -40,216 +50,195 @@ IMAGE_EXAMPLES = [
|
|
40 |
"label": "Flickr Image",
|
41 |
},
|
42 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
VIDEO_EXAMPLES = [
|
44 |
-
{"path": "./
|
|
|
|
|
45 |
]
|
46 |
-
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
|
47 |
|
48 |
logging.basicConfig(
|
49 |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
50 |
)
|
51 |
logger = logging.getLogger(__name__)
|
52 |
|
53 |
-
VIDEO_OUTPUT_DIR = Path("static/videos")
|
54 |
-
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
56 |
|
|
|
57 |
def detect_objects(
|
58 |
-
image: Optional[Image.Image],
|
59 |
checkpoint: str,
|
|
|
60 |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
61 |
-
|
62 |
-
|
63 |
-
) -> Tuple[
|
64 |
-
Optional[Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]],
|
65 |
-
gr.Markdown,
|
66 |
-
]:
|
67 |
-
if use_url and url:
|
68 |
-
try:
|
69 |
-
input_image = load_image(url)
|
70 |
-
except Exception as e:
|
71 |
-
logger.error(f"Failed to load image from URL {url}: {str(e)}")
|
72 |
-
return None, gr.Markdown(
|
73 |
-
f"**Error**: Failed to load image from URL: {str(e)}", visible=True
|
74 |
-
)
|
75 |
-
elif image is not None:
|
76 |
-
if not isinstance(image, Image.Image):
|
77 |
-
logger.error("Input image is not a PIL Image")
|
78 |
-
return None, gr.Markdown("**Error**: Invalid image format.", visible=True)
|
79 |
-
input_image = image
|
80 |
-
else:
|
81 |
-
return None, gr.Markdown(
|
82 |
-
"**Error**: Please provide an image or URL.", visible=True
|
83 |
-
)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
"object-detection",
|
88 |
-
model=checkpoint,
|
89 |
-
image_processor=checkpoint,
|
90 |
-
device="cpu",
|
91 |
-
)
|
92 |
-
except Exception as e:
|
93 |
-
logger.error(f"Failed to initialize model pipeline for {checkpoint}: {str(e)}")
|
94 |
-
return None, gr.Markdown(
|
95 |
-
f"**Error**: Failed to load model: {str(e)}", visible=True
|
96 |
-
)
|
97 |
|
98 |
-
|
99 |
-
|
|
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
if score < confidence_threshold:
|
105 |
-
continue
|
106 |
-
label = f"{result['label']} ({score:.2f})"
|
107 |
-
box = result["box"]
|
108 |
-
# Validate and convert box to (xmin, ymin, xmax, ymax)
|
109 |
-
bbox_xmin = max(0, int(box["xmin"]))
|
110 |
-
bbox_ymin = max(0, int(box["ymin"]))
|
111 |
-
bbox_xmax = min(img_width, int(box["xmax"]))
|
112 |
-
bbox_ymax = min(img_height, int(box["ymax"]))
|
113 |
-
if bbox_xmax <= bbox_xmin or bbox_ymax <= bbox_ymin:
|
114 |
-
continue
|
115 |
-
bounding_box = (bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax)
|
116 |
-
annotations.append((bounding_box, label))
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
visible=True,
|
122 |
-
)
|
123 |
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
|
126 |
|
127 |
-
def
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
(xmin, ymin - text_size[1] - 4),
|
139 |
-
(xmin + text_size[0], ymin),
|
140 |
-
(255, 255, 255),
|
141 |
-
-1,
|
142 |
-
)
|
143 |
-
cv2.putText(
|
144 |
-
image_bgr,
|
145 |
-
label,
|
146 |
-
(xmin, ymin - 4),
|
147 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
148 |
-
0.5,
|
149 |
-
(0, 0, 0),
|
150 |
-
1,
|
151 |
-
)
|
152 |
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
def process_video(
|
157 |
video_path: str,
|
158 |
checkpoint: str,
|
159 |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
160 |
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
161 |
-
) ->
|
|
|
162 |
if not video_path or not os.path.isfile(video_path):
|
163 |
-
|
164 |
-
return None, gr.Markdown(
|
165 |
-
"**Error**: Please provide a valid video file.", visible=True
|
166 |
-
)
|
167 |
|
168 |
ext = os.path.splitext(video_path)[1].lower()
|
169 |
if ext not in ALLOWED_VIDEO_EXTENSIONS:
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
186 |
-
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
187 |
-
|
188 |
-
# Use H.264 codec for browser compatibility
|
189 |
-
# fourcc = cv2.VideoWriter_fourcc(*"H264")
|
190 |
-
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
191 |
-
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
192 |
-
writer = cv2.VideoWriter(temp_file.name, fourcc, fps, (width, height))
|
193 |
-
if not writer.isOpened():
|
194 |
-
logger.error("Failed to initialize video writer")
|
195 |
-
cap.release()
|
196 |
-
temp_file.close()
|
197 |
-
os.unlink(temp_file.name)
|
198 |
-
return None, gr.Markdown(
|
199 |
-
"**Error**: Failed to initialize video writer.", visible=True
|
200 |
-
)
|
201 |
|
202 |
-
|
203 |
-
for _ in tqdm.tqdm(
|
204 |
-
range(min(MAX_NUM_FRAMES, num_frames)), desc="Processing video"
|
205 |
-
):
|
206 |
-
ok, frame = cap.read()
|
207 |
-
if not ok:
|
208 |
-
break
|
209 |
-
rgb_frame = frame[:, :, ::-1] # BGR to RGB
|
210 |
-
pil_image = Image.fromarray(rgb_frame)
|
211 |
-
(annotated_image, annotations), _ = detect_objects(
|
212 |
-
pil_image, checkpoint, confidence_threshold, use_url=False, url=""
|
213 |
-
)
|
214 |
-
if annotated_image is None:
|
215 |
-
continue
|
216 |
-
annotated_frame = annotate_frame(annotated_image, annotations)
|
217 |
-
writer.write(annotated_frame)
|
218 |
-
frame_count += 1
|
219 |
|
220 |
-
|
221 |
-
|
|
|
222 |
|
223 |
-
if
|
224 |
-
|
225 |
-
temp_file.close()
|
226 |
-
os.unlink(temp_file.name)
|
227 |
-
return None, gr.Markdown(
|
228 |
-
"**Warning**: No valid frames processed. Try a different video or threshold.",
|
229 |
-
visible=True,
|
230 |
-
)
|
231 |
|
232 |
-
|
|
|
|
|
|
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
logger.info(f"Video saved to {output_path}")
|
240 |
-
|
241 |
-
return str(output_path), gr.Markdown(visible=False)
|
242 |
-
|
243 |
-
except Exception as e:
|
244 |
-
logger.error(f"Video processing failed: {str(e)}")
|
245 |
-
if "temp_file" in locals():
|
246 |
-
temp_file.close()
|
247 |
-
if os.path.exists(temp_file.name):
|
248 |
-
os.unlink(temp_file.name)
|
249 |
-
return None, gr.Markdown(
|
250 |
-
f"**Error**: Video processing failed: {str(e)}", visible=True
|
251 |
)
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
def create_image_inputs() -> List[gr.components.Component]:
|
255 |
return [
|
@@ -340,7 +329,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
340 |
image_input,
|
341 |
use_url,
|
342 |
url_input,
|
343 |
-
|
344 |
image_confidence_threshold,
|
345 |
) = create_image_inputs()
|
346 |
image_detect_button, image_clear_button = create_button_row(
|
@@ -353,10 +342,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
353 |
color_map=None,
|
354 |
elem_classes="output-component",
|
355 |
)
|
356 |
-
image_error_message = gr.Markdown(
|
357 |
-
visible=False, elem_classes="error-text"
|
358 |
-
)
|
359 |
-
|
360 |
gr.Examples(
|
361 |
examples=[
|
362 |
[
|
@@ -372,18 +357,18 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
372 |
image_input,
|
373 |
use_url,
|
374 |
url_input,
|
375 |
-
|
376 |
image_confidence_threshold,
|
377 |
],
|
378 |
-
outputs=[image_output
|
379 |
-
fn=
|
380 |
cache_examples=False,
|
381 |
label="Select an image example to populate inputs",
|
382 |
)
|
383 |
|
384 |
with gr.Tab("Video"):
|
385 |
gr.Markdown(
|
386 |
-
f"The input video will be
|
387 |
)
|
388 |
with gr.Row():
|
389 |
with gr.Column(scale=1, min_width=300):
|
@@ -400,9 +385,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
400 |
format="mp4", # Explicit MP4 format
|
401 |
elem_classes="output-component",
|
402 |
)
|
403 |
-
video_error_message = gr.Markdown(
|
404 |
-
visible=False, elem_classes="error-text"
|
405 |
-
)
|
406 |
|
407 |
gr.Examples(
|
408 |
examples=[
|
@@ -410,7 +392,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
410 |
for example in VIDEO_EXAMPLES
|
411 |
],
|
412 |
inputs=[video_input, video_checkpoint, video_confidence_threshold],
|
413 |
-
outputs=[video_output
|
414 |
fn=process_video,
|
415 |
cache_examples=False,
|
416 |
label="Select a video example to populate inputs",
|
@@ -432,16 +414,14 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
432 |
DEFAULT_CHECKPOINT,
|
433 |
DEFAULT_CONFIDENCE_THRESHOLD,
|
434 |
None,
|
435 |
-
gr.Markdown(visible=False),
|
436 |
),
|
437 |
outputs=[
|
438 |
image_input,
|
439 |
use_url,
|
440 |
url_input,
|
441 |
-
|
442 |
image_confidence_threshold,
|
443 |
image_output,
|
444 |
-
image_error_message,
|
445 |
],
|
446 |
)
|
447 |
|
@@ -452,35 +432,32 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
452 |
DEFAULT_CHECKPOINT,
|
453 |
DEFAULT_CONFIDENCE_THRESHOLD,
|
454 |
None,
|
455 |
-
gr.Markdown(visible=False),
|
456 |
),
|
457 |
outputs=[
|
458 |
video_input,
|
459 |
video_checkpoint,
|
460 |
video_confidence_threshold,
|
461 |
video_output,
|
462 |
-
video_error_message,
|
463 |
],
|
464 |
)
|
465 |
|
466 |
# Image detect button
|
467 |
image_detect_button.click(
|
468 |
-
fn=
|
469 |
inputs=[
|
|
|
470 |
image_input,
|
471 |
-
image_checkpoint,
|
472 |
-
image_confidence_threshold,
|
473 |
-
use_url,
|
474 |
url_input,
|
|
|
475 |
],
|
476 |
-
outputs=[image_output
|
477 |
)
|
478 |
|
479 |
# Video detect button
|
480 |
video_detect_button.click(
|
481 |
fn=process_video,
|
482 |
inputs=[video_input, video_checkpoint, video_confidence_threshold],
|
483 |
-
outputs=[video_output
|
484 |
)
|
485 |
|
486 |
if __name__ == "__main__":
|
|
|
|
|
1 |
import os
|
2 |
+
import cv2
|
3 |
+
import tqdm
|
4 |
import shutil
|
5 |
import tempfile
|
6 |
+
import logging
|
7 |
+
import supervision as sv
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import spaces
|
11 |
import gradio as gr
|
12 |
+
|
13 |
+
from pathlib import Path
|
14 |
+
from functools import lru_cache
|
15 |
+
from typing import List, Optional, Tuple
|
16 |
+
|
17 |
from PIL import Image
|
18 |
+
from transformers import AutoModelForObjectDetection, AutoImageProcessor
|
19 |
from transformers.image_utils import load_image
|
20 |
+
|
21 |
|
22 |
# Configuration constants
|
23 |
CHECKPOINTS = [
|
24 |
+
"ustc-community/dfine_m_obj2coco",
|
25 |
"ustc-community/dfine_m_obj365",
|
26 |
"ustc-community/dfine_n_coco",
|
27 |
"ustc-community/dfine_s_coco",
|
|
|
32 |
"ustc-community/dfine_l_obj365",
|
33 |
"ustc-community/dfine_x_obj365",
|
34 |
"ustc-community/dfine_s_obj2coco",
|
|
|
35 |
"ustc-community/dfine_l_obj2coco_e25",
|
36 |
"ustc-community/dfine_x_obj2coco",
|
37 |
]
|
|
|
38 |
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
|
39 |
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
|
40 |
+
|
41 |
+
TORCH_DTYPE = torch.float32
|
42 |
+
|
43 |
+
# Image
|
44 |
IMAGE_EXAMPLES = [
|
45 |
+
{"path": "./examples/images/crossroad.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
46 |
{
|
47 |
"path": None,
|
48 |
"use_url": True,
|
|
|
50 |
"label": "Flickr Image",
|
51 |
},
|
52 |
]
|
53 |
+
|
54 |
+
# Video
|
55 |
+
MAX_NUM_FRAMES = 500
|
56 |
+
BATCH_SIZE = 4
|
57 |
+
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
|
58 |
+
VIDEO_OUTPUT_DIR = Path("static/videos")
|
59 |
+
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
60 |
VIDEO_EXAMPLES = [
|
61 |
+
{"path": "./examples/videos/traffic.mp4", "label": "Local Video"},
|
62 |
+
{"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video"},
|
63 |
+
{"path": "./examples/videos/break_dance.mp4", "label": "Local Video"},
|
64 |
]
|
|
|
65 |
|
66 |
logging.basicConfig(
|
67 |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
68 |
)
|
69 |
logger = logging.getLogger(__name__)
|
70 |
|
|
|
|
|
71 |
|
72 |
+
@lru_cache(maxsize=3)
|
73 |
+
def get_model_and_image_processor(checkpoint: str, device: str = "cpu"):
|
74 |
+
model = AutoModelForObjectDetection.from_pretrained(checkpoint, torch_dtype=TORCH_DTYPE).to(device)
|
75 |
+
image_processor = AutoImageProcessor.from_pretrained(checkpoint)
|
76 |
+
return model, image_processor
|
77 |
|
78 |
+
@spaces.GPU(duration=20)
|
79 |
def detect_objects(
|
|
|
80 |
checkpoint: str,
|
81 |
+
images: Optional[List[Image.Image]] = None,
|
82 |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
83 |
+
target_sizes: Optional[List[Tuple[int, int]]] = None,
|
84 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
87 |
+
model, image_processor = get_model_and_image_processor(checkpoint, device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# preprocess images
|
90 |
+
inputs = image_processor(images=images, return_tensors="pt")
|
91 |
+
inputs = inputs.to(device).to(TORCH_DTYPE)
|
92 |
|
93 |
+
# forward pass
|
94 |
+
with torch.no_grad():
|
95 |
+
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
# postprocess outputs
|
98 |
+
if not target_sizes:
|
99 |
+
target_sizes = [(image.height, image.width) for image in images]
|
|
|
|
|
100 |
|
101 |
+
results = image_processor.post_process_object_detection(
|
102 |
+
outputs, target_sizes=target_sizes, threshold=confidence_threshold
|
103 |
+
)
|
104 |
+
|
105 |
+
return results, model.config.id2label
|
106 |
|
107 |
|
108 |
+
def process_image(
|
109 |
+
checkpoint: str = DEFAULT_CHECKPOINT,
|
110 |
+
image: Optional[Image.Image] = None,
|
111 |
+
url: Optional[str] = None,
|
112 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
113 |
+
):
|
114 |
|
115 |
+
if (image is None) ^ bool(url):
|
116 |
+
raise ValueError(f"Either image or url must be provided, but not both.")
|
117 |
+
|
118 |
+
if url:
|
119 |
+
image = load_image(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
results, id2label = detect_objects(
|
122 |
+
checkpoint=checkpoint,
|
123 |
+
images=[image],
|
124 |
+
confidence_threshold=confidence_threshold,
|
125 |
+
)
|
126 |
+
result = results[0] # first image in batch (we have batch size 1)
|
127 |
|
128 |
+
annotations = []
|
129 |
+
for label, score, box in zip(result["labels"], result["scores"], result["boxes"]):
|
130 |
+
text_label = id2label[label.item()]
|
131 |
+
formatted_label = f"{text_label} ({score:.2f})"
|
132 |
+
x_min, y_min, x_max, y_max = box.cpu().numpy().round().astype(int)
|
133 |
+
x_min = max(0, x_min)
|
134 |
+
y_min = max(0, y_min)
|
135 |
+
x_max = min(image.width - 1, x_max)
|
136 |
+
y_max = min(image.height - 1, y_max)
|
137 |
+
annotations.append(((x_min, y_min, x_max, y_max), formatted_label))
|
138 |
+
|
139 |
+
return (image, annotations)
|
140 |
+
|
141 |
+
|
142 |
+
def get_target_size(image_height, image_width, max_size: int):
|
143 |
+
if image_height < max_size and image_width < max_size:
|
144 |
+
return image_width, image_height
|
145 |
+
if image_height > image_width:
|
146 |
+
new_height = max_size
|
147 |
+
new_width = int(image_width * max_size / image_height)
|
148 |
+
else:
|
149 |
+
new_width = max_size
|
150 |
+
new_height = int(image_height * max_size / image_width)
|
151 |
+
return new_width, new_height
|
152 |
|
153 |
def process_video(
|
154 |
video_path: str,
|
155 |
checkpoint: str,
|
156 |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
157 |
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
158 |
+
) -> str:
|
159 |
+
|
160 |
if not video_path or not os.path.isfile(video_path):
|
161 |
+
raise ValueError(f"Invalid video path: {video_path}")
|
|
|
|
|
|
|
162 |
|
163 |
ext = os.path.splitext(video_path)[1].lower()
|
164 |
if ext not in ALLOWED_VIDEO_EXTENSIONS:
|
165 |
+
raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}")
|
166 |
+
|
167 |
+
cap = cv2.VideoCapture(video_path)
|
168 |
+
if not cap.isOpened():
|
169 |
+
raise ValueError(f"Failed to open video: {video_path}")
|
170 |
+
|
171 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
172 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
173 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
174 |
+
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
175 |
+
|
176 |
+
process_each_frame = fps // 25
|
177 |
+
target_fps = fps / process_each_frame
|
178 |
+
target_width, target_height = get_target_size(height, width, 1080)
|
179 |
+
|
180 |
+
# Use H.264 codec for browser compatibility
|
181 |
+
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
|
182 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".avi", delete=False)
|
183 |
+
writer = cv2.VideoWriter(temp_file.name, fourcc, target_fps, (target_width, target_height))
|
184 |
+
|
185 |
+
box_annotator = sv.BoxAnnotator(thickness=1)
|
186 |
+
label_annotator = sv.LabelAnnotator(text_scale=0.5)
|
187 |
+
|
188 |
+
if not writer.isOpened():
|
189 |
+
cap.release()
|
190 |
+
temp_file.close()
|
191 |
+
os.unlink(temp_file.name)
|
192 |
+
raise ValueError("Failed to initialize video writer")
|
193 |
|
194 |
+
frames_to_process = int(min(MAX_NUM_FRAMES * process_each_frame, num_frames))
|
195 |
+
batch = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
for i in tqdm.tqdm(range(frames_to_process), desc="Processing video"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
ok, frame = cap.read()
|
200 |
+
if not ok:
|
201 |
+
break
|
202 |
|
203 |
+
if not i % process_each_frame == 0:
|
204 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
if len(batch) < BATCH_SIZE:
|
207 |
+
frame = frame[:, :, ::-1].copy() # BGR to RGB
|
208 |
+
batch.append(frame)
|
209 |
+
continue
|
210 |
|
211 |
+
results, id2label = detect_objects(
|
212 |
+
images=[Image.fromarray(frame) for frame in batch],
|
213 |
+
checkpoint=checkpoint,
|
214 |
+
confidence_threshold=confidence_threshold,
|
215 |
+
target_sizes=[(target_height, target_width)] * len(batch),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
)
|
217 |
|
218 |
+
for frame, result in zip(batch, results):
|
219 |
+
frame = cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_AREA)
|
220 |
+
detections = sv.Detections.from_transformers(result, id2label=id2label)
|
221 |
+
detections = detections.with_nms(threshold=0.95, class_agnostic=True)
|
222 |
+
annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
|
223 |
+
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
|
224 |
+
writer.write(cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR))
|
225 |
+
|
226 |
+
batch = []
|
227 |
+
|
228 |
+
writer.release()
|
229 |
+
cap.release()
|
230 |
+
temp_file.close()
|
231 |
+
|
232 |
+
# Copy to persistent directory for Gradio access
|
233 |
+
output_filename = f"output_{os.path.basename(temp_file.name)}"
|
234 |
+
output_path = VIDEO_OUTPUT_DIR / output_filename
|
235 |
+
shutil.copy(temp_file.name, output_path)
|
236 |
+
os.unlink(temp_file.name) # Remove temporary file
|
237 |
+
logger.info(f"Video saved to {output_path}")
|
238 |
+
|
239 |
+
return str(output_path)
|
240 |
+
|
241 |
+
|
242 |
|
243 |
def create_image_inputs() -> List[gr.components.Component]:
|
244 |
return [
|
|
|
329 |
image_input,
|
330 |
use_url,
|
331 |
url_input,
|
332 |
+
image_model_checkpoint,
|
333 |
image_confidence_threshold,
|
334 |
) = create_image_inputs()
|
335 |
image_detect_button, image_clear_button = create_button_row(
|
|
|
342 |
color_map=None,
|
343 |
elem_classes="output-component",
|
344 |
)
|
|
|
|
|
|
|
|
|
345 |
gr.Examples(
|
346 |
examples=[
|
347 |
[
|
|
|
357 |
image_input,
|
358 |
use_url,
|
359 |
url_input,
|
360 |
+
image_model_checkpoint,
|
361 |
image_confidence_threshold,
|
362 |
],
|
363 |
+
outputs=[image_output],
|
364 |
+
fn=process_image,
|
365 |
cache_examples=False,
|
366 |
label="Select an image example to populate inputs",
|
367 |
)
|
368 |
|
369 |
with gr.Tab("Video"):
|
370 |
gr.Markdown(
|
371 |
+
f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)."
|
372 |
)
|
373 |
with gr.Row():
|
374 |
with gr.Column(scale=1, min_width=300):
|
|
|
385 |
format="mp4", # Explicit MP4 format
|
386 |
elem_classes="output-component",
|
387 |
)
|
|
|
|
|
|
|
388 |
|
389 |
gr.Examples(
|
390 |
examples=[
|
|
|
392 |
for example in VIDEO_EXAMPLES
|
393 |
],
|
394 |
inputs=[video_input, video_checkpoint, video_confidence_threshold],
|
395 |
+
outputs=[video_output],
|
396 |
fn=process_video,
|
397 |
cache_examples=False,
|
398 |
label="Select a video example to populate inputs",
|
|
|
414 |
DEFAULT_CHECKPOINT,
|
415 |
DEFAULT_CONFIDENCE_THRESHOLD,
|
416 |
None,
|
|
|
417 |
),
|
418 |
outputs=[
|
419 |
image_input,
|
420 |
use_url,
|
421 |
url_input,
|
422 |
+
image_model_checkpoint,
|
423 |
image_confidence_threshold,
|
424 |
image_output,
|
|
|
425 |
],
|
426 |
)
|
427 |
|
|
|
432 |
DEFAULT_CHECKPOINT,
|
433 |
DEFAULT_CONFIDENCE_THRESHOLD,
|
434 |
None,
|
|
|
435 |
),
|
436 |
outputs=[
|
437 |
video_input,
|
438 |
video_checkpoint,
|
439 |
video_confidence_threshold,
|
440 |
video_output,
|
|
|
441 |
],
|
442 |
)
|
443 |
|
444 |
# Image detect button
|
445 |
image_detect_button.click(
|
446 |
+
fn=process_image,
|
447 |
inputs=[
|
448 |
+
image_model_checkpoint,
|
449 |
image_input,
|
|
|
|
|
|
|
450 |
url_input,
|
451 |
+
image_confidence_threshold,
|
452 |
],
|
453 |
+
outputs=[image_output],
|
454 |
)
|
455 |
|
456 |
# Video detect button
|
457 |
video_detect_button.click(
|
458 |
fn=process_video,
|
459 |
inputs=[video_input, video_checkpoint, video_confidence_threshold],
|
460 |
+
outputs=[video_output],
|
461 |
)
|
462 |
|
463 |
if __name__ == "__main__":
|
image.jpg → examples/images/crossroad.jpg
RENAMED
File without changes
|
video.mp4 → examples/videos/break_dance.mp4
RENAMED
File without changes
|
examples/videos/fast_and_furious.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5980eada9d80c65b4da5b536427ccf8ff8ea2707ee3e4aa52fb2c4e1b1979dae
|
3 |
+
size 16872922
|
examples/videos/traffic.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71908c136bba6b50b9071fb2015553f651c91a7ee857924f33616c046011aaed
|
3 |
+
size 8591523
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
CHANGED
@@ -2,6 +2,9 @@ gradio
|
|
2 |
transformers @ git+https://github.com/huggingface/transformers
|
3 |
torch
|
4 |
torchvision
|
5 |
-
opencv-python
|
|
|
6 |
tqdm
|
7 |
-
pillow
|
|
|
|
|
|
2 |
transformers @ git+https://github.com/huggingface/transformers
|
3 |
torch
|
4 |
torchvision
|
5 |
+
opencv-python-headless
|
6 |
+
ffmpeg-python
|
7 |
tqdm
|
8 |
+
pillow
|
9 |
+
supervision
|
10 |
+
spaces
|