qubvel-hf HF Staff commited on
Commit
fe66000
·
1 Parent(s): caa691a

Batched vidoe processing + supervision

Browse files
app.py CHANGED
@@ -1,19 +1,27 @@
1
- import logging
2
  import os
3
- from typing import Tuple, List, Optional
4
- from pathlib import Path
5
  import shutil
6
  import tempfile
7
- import numpy as np
8
- import cv2
 
 
 
9
  import gradio as gr
 
 
 
 
 
10
  from PIL import Image
11
- from transformers import pipeline
12
  from transformers.image_utils import load_image
13
- import tqdm
14
 
15
  # Configuration constants
16
  CHECKPOINTS = [
 
17
  "ustc-community/dfine_m_obj365",
18
  "ustc-community/dfine_n_coco",
19
  "ustc-community/dfine_s_coco",
@@ -24,15 +32,17 @@ CHECKPOINTS = [
24
  "ustc-community/dfine_l_obj365",
25
  "ustc-community/dfine_x_obj365",
26
  "ustc-community/dfine_s_obj2coco",
27
- "ustc-community/dfine_m_obj2coco",
28
  "ustc-community/dfine_l_obj2coco_e25",
29
  "ustc-community/dfine_x_obj2coco",
30
  ]
31
- MAX_NUM_FRAMES = 300
32
  DEFAULT_CHECKPOINT = CHECKPOINTS[0]
33
  DEFAULT_CONFIDENCE_THRESHOLD = 0.3
 
 
 
 
34
  IMAGE_EXAMPLES = [
35
- {"path": "./image.jpg", "use_url": False, "url": "", "label": "Local Image"},
36
  {
37
  "path": None,
38
  "use_url": True,
@@ -40,216 +50,195 @@ IMAGE_EXAMPLES = [
40
  "label": "Flickr Image",
41
  },
42
  ]
 
 
 
 
 
 
 
43
  VIDEO_EXAMPLES = [
44
- {"path": "./video.mp4", "label": "Local Video"},
 
 
45
  ]
46
- ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
47
 
48
  logging.basicConfig(
49
  level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
50
  )
51
  logger = logging.getLogger(__name__)
52
 
53
- VIDEO_OUTPUT_DIR = Path("static/videos")
54
- VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
55
 
 
 
 
 
 
56
 
 
57
  def detect_objects(
58
- image: Optional[Image.Image],
59
  checkpoint: str,
 
60
  confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
61
- use_url: bool = False,
62
- url: str = "",
63
- ) -> Tuple[
64
- Optional[Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]],
65
- gr.Markdown,
66
- ]:
67
- if use_url and url:
68
- try:
69
- input_image = load_image(url)
70
- except Exception as e:
71
- logger.error(f"Failed to load image from URL {url}: {str(e)}")
72
- return None, gr.Markdown(
73
- f"**Error**: Failed to load image from URL: {str(e)}", visible=True
74
- )
75
- elif image is not None:
76
- if not isinstance(image, Image.Image):
77
- logger.error("Input image is not a PIL Image")
78
- return None, gr.Markdown("**Error**: Invalid image format.", visible=True)
79
- input_image = image
80
- else:
81
- return None, gr.Markdown(
82
- "**Error**: Please provide an image or URL.", visible=True
83
- )
84
 
85
- try:
86
- pipe = pipeline(
87
- "object-detection",
88
- model=checkpoint,
89
- image_processor=checkpoint,
90
- device="cpu",
91
- )
92
- except Exception as e:
93
- logger.error(f"Failed to initialize model pipeline for {checkpoint}: {str(e)}")
94
- return None, gr.Markdown(
95
- f"**Error**: Failed to load model: {str(e)}", visible=True
96
- )
97
 
98
- results = pipe(input_image, threshold=confidence_threshold)
99
- img_width, img_height = input_image.size
 
100
 
101
- annotations = []
102
- for result in results:
103
- score = result["score"]
104
- if score < confidence_threshold:
105
- continue
106
- label = f"{result['label']} ({score:.2f})"
107
- box = result["box"]
108
- # Validate and convert box to (xmin, ymin, xmax, ymax)
109
- bbox_xmin = max(0, int(box["xmin"]))
110
- bbox_ymin = max(0, int(box["ymin"]))
111
- bbox_xmax = min(img_width, int(box["xmax"]))
112
- bbox_ymax = min(img_height, int(box["ymax"]))
113
- if bbox_xmax <= bbox_xmin or bbox_ymax <= bbox_ymin:
114
- continue
115
- bounding_box = (bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax)
116
- annotations.append((bounding_box, label))
117
 
118
- if not annotations:
119
- return (input_image, []), gr.Markdown(
120
- "**Warning**: No objects detected above the confidence threshold. Try lowering the threshold.",
121
- visible=True,
122
- )
123
 
124
- return (input_image, annotations), gr.Markdown(visible=False)
 
 
 
 
125
 
126
 
127
- def annotate_frame(
128
- image: Image.Image, annotations: List[Tuple[Tuple[int, int, int, int], str]]
129
- ) -> np.ndarray:
130
- image_np = np.array(image)
131
- image_bgr = image_np[:, :, ::-1].copy() # RGB to BGR
 
132
 
133
- for (xmin, ymin, xmax, ymax), label in annotations:
134
- cv2.rectangle(image_bgr, (xmin, ymin), (xmax, ymax), (255, 255, 255), 2)
135
- text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
136
- cv2.rectangle(
137
- image_bgr,
138
- (xmin, ymin - text_size[1] - 4),
139
- (xmin + text_size[0], ymin),
140
- (255, 255, 255),
141
- -1,
142
- )
143
- cv2.putText(
144
- image_bgr,
145
- label,
146
- (xmin, ymin - 4),
147
- cv2.FONT_HERSHEY_SIMPLEX,
148
- 0.5,
149
- (0, 0, 0),
150
- 1,
151
- )
152
 
153
- return image_bgr
 
 
 
 
 
154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  def process_video(
157
  video_path: str,
158
  checkpoint: str,
159
  confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
160
  progress: gr.Progress = gr.Progress(track_tqdm=True),
161
- ) -> Tuple[Optional[str], gr.Markdown]:
 
162
  if not video_path or not os.path.isfile(video_path):
163
- logger.error(f"Invalid video path: {video_path}")
164
- return None, gr.Markdown(
165
- "**Error**: Please provide a valid video file.", visible=True
166
- )
167
 
168
  ext = os.path.splitext(video_path)[1].lower()
169
  if ext not in ALLOWED_VIDEO_EXTENSIONS:
170
- logger.error(f"Unsupported video format: {ext}")
171
- return None, gr.Markdown(
172
- f"**Error**: Unsupported video format. Use MP4, AVI, or MOV.", visible=True
173
- )
174
-
175
- try:
176
- cap = cv2.VideoCapture(video_path)
177
- if not cap.isOpened():
178
- logger.error(f"Failed to open video: {video_path}")
179
- return None, gr.Markdown(
180
- "**Error**: Failed to open video file.", visible=True
181
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
- height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
184
- width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
185
- fps = cap.get(cv2.CAP_PROP_FPS)
186
- num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
187
-
188
- # Use H.264 codec for browser compatibility
189
- # fourcc = cv2.VideoWriter_fourcc(*"H264")
190
- fourcc = cv2.VideoWriter_fourcc(*"mp4v")
191
- temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
192
- writer = cv2.VideoWriter(temp_file.name, fourcc, fps, (width, height))
193
- if not writer.isOpened():
194
- logger.error("Failed to initialize video writer")
195
- cap.release()
196
- temp_file.close()
197
- os.unlink(temp_file.name)
198
- return None, gr.Markdown(
199
- "**Error**: Failed to initialize video writer.", visible=True
200
- )
201
 
202
- frame_count = 0
203
- for _ in tqdm.tqdm(
204
- range(min(MAX_NUM_FRAMES, num_frames)), desc="Processing video"
205
- ):
206
- ok, frame = cap.read()
207
- if not ok:
208
- break
209
- rgb_frame = frame[:, :, ::-1] # BGR to RGB
210
- pil_image = Image.fromarray(rgb_frame)
211
- (annotated_image, annotations), _ = detect_objects(
212
- pil_image, checkpoint, confidence_threshold, use_url=False, url=""
213
- )
214
- if annotated_image is None:
215
- continue
216
- annotated_frame = annotate_frame(annotated_image, annotations)
217
- writer.write(annotated_frame)
218
- frame_count += 1
219
 
220
- writer.release()
221
- cap.release()
 
222
 
223
- if frame_count == 0:
224
- logger.warning("No valid frames processed in video")
225
- temp_file.close()
226
- os.unlink(temp_file.name)
227
- return None, gr.Markdown(
228
- "**Warning**: No valid frames processed. Try a different video or threshold.",
229
- visible=True,
230
- )
231
 
232
- temp_file.close()
 
 
 
233
 
234
- # Copy to persistent directory for Gradio access
235
- output_filename = f"output_{os.path.basename(temp_file.name)}"
236
- output_path = VIDEO_OUTPUT_DIR / output_filename
237
- shutil.copy(temp_file.name, output_path)
238
- os.unlink(temp_file.name) # Remove temporary file
239
- logger.info(f"Video saved to {output_path}")
240
-
241
- return str(output_path), gr.Markdown(visible=False)
242
-
243
- except Exception as e:
244
- logger.error(f"Video processing failed: {str(e)}")
245
- if "temp_file" in locals():
246
- temp_file.close()
247
- if os.path.exists(temp_file.name):
248
- os.unlink(temp_file.name)
249
- return None, gr.Markdown(
250
- f"**Error**: Video processing failed: {str(e)}", visible=True
251
  )
252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253
 
254
  def create_image_inputs() -> List[gr.components.Component]:
255
  return [
@@ -340,7 +329,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
340
  image_input,
341
  use_url,
342
  url_input,
343
- image_checkpoint,
344
  image_confidence_threshold,
345
  ) = create_image_inputs()
346
  image_detect_button, image_clear_button = create_button_row(
@@ -353,10 +342,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
353
  color_map=None,
354
  elem_classes="output-component",
355
  )
356
- image_error_message = gr.Markdown(
357
- visible=False, elem_classes="error-text"
358
- )
359
-
360
  gr.Examples(
361
  examples=[
362
  [
@@ -372,18 +357,18 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
372
  image_input,
373
  use_url,
374
  url_input,
375
- image_checkpoint,
376
  image_confidence_threshold,
377
  ],
378
- outputs=[image_output, image_error_message],
379
- fn=detect_objects,
380
  cache_examples=False,
381
  label="Select an image example to populate inputs",
382
  )
383
 
384
  with gr.Tab("Video"):
385
  gr.Markdown(
386
- f"The input video will be truncated to {MAX_NUM_FRAMES} frames."
387
  )
388
  with gr.Row():
389
  with gr.Column(scale=1, min_width=300):
@@ -400,9 +385,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
400
  format="mp4", # Explicit MP4 format
401
  elem_classes="output-component",
402
  )
403
- video_error_message = gr.Markdown(
404
- visible=False, elem_classes="error-text"
405
- )
406
 
407
  gr.Examples(
408
  examples=[
@@ -410,7 +392,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
410
  for example in VIDEO_EXAMPLES
411
  ],
412
  inputs=[video_input, video_checkpoint, video_confidence_threshold],
413
- outputs=[video_output, video_error_message],
414
  fn=process_video,
415
  cache_examples=False,
416
  label="Select a video example to populate inputs",
@@ -432,16 +414,14 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
432
  DEFAULT_CHECKPOINT,
433
  DEFAULT_CONFIDENCE_THRESHOLD,
434
  None,
435
- gr.Markdown(visible=False),
436
  ),
437
  outputs=[
438
  image_input,
439
  use_url,
440
  url_input,
441
- image_checkpoint,
442
  image_confidence_threshold,
443
  image_output,
444
- image_error_message,
445
  ],
446
  )
447
 
@@ -452,35 +432,32 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
452
  DEFAULT_CHECKPOINT,
453
  DEFAULT_CONFIDENCE_THRESHOLD,
454
  None,
455
- gr.Markdown(visible=False),
456
  ),
457
  outputs=[
458
  video_input,
459
  video_checkpoint,
460
  video_confidence_threshold,
461
  video_output,
462
- video_error_message,
463
  ],
464
  )
465
 
466
  # Image detect button
467
  image_detect_button.click(
468
- fn=detect_objects,
469
  inputs=[
 
470
  image_input,
471
- image_checkpoint,
472
- image_confidence_threshold,
473
- use_url,
474
  url_input,
 
475
  ],
476
- outputs=[image_output, image_error_message],
477
  )
478
 
479
  # Video detect button
480
  video_detect_button.click(
481
  fn=process_video,
482
  inputs=[video_input, video_checkpoint, video_confidence_threshold],
483
- outputs=[video_output, video_error_message],
484
  )
485
 
486
  if __name__ == "__main__":
 
 
1
  import os
2
+ import cv2
3
+ import tqdm
4
  import shutil
5
  import tempfile
6
+ import logging
7
+ import supervision as sv
8
+ import torch
9
+
10
+ import spaces
11
  import gradio as gr
12
+
13
+ from pathlib import Path
14
+ from functools import lru_cache
15
+ from typing import List, Optional, Tuple
16
+
17
  from PIL import Image
18
+ from transformers import AutoModelForObjectDetection, AutoImageProcessor
19
  from transformers.image_utils import load_image
20
+
21
 
22
  # Configuration constants
23
  CHECKPOINTS = [
24
+ "ustc-community/dfine_m_obj2coco",
25
  "ustc-community/dfine_m_obj365",
26
  "ustc-community/dfine_n_coco",
27
  "ustc-community/dfine_s_coco",
 
32
  "ustc-community/dfine_l_obj365",
33
  "ustc-community/dfine_x_obj365",
34
  "ustc-community/dfine_s_obj2coco",
 
35
  "ustc-community/dfine_l_obj2coco_e25",
36
  "ustc-community/dfine_x_obj2coco",
37
  ]
 
38
  DEFAULT_CHECKPOINT = CHECKPOINTS[0]
39
  DEFAULT_CONFIDENCE_THRESHOLD = 0.3
40
+
41
+ TORCH_DTYPE = torch.float32
42
+
43
+ # Image
44
  IMAGE_EXAMPLES = [
45
+ {"path": "./examples/images/crossroad.jpg", "use_url": False, "url": "", "label": "Local Image"},
46
  {
47
  "path": None,
48
  "use_url": True,
 
50
  "label": "Flickr Image",
51
  },
52
  ]
53
+
54
+ # Video
55
+ MAX_NUM_FRAMES = 500
56
+ BATCH_SIZE = 4
57
+ ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
58
+ VIDEO_OUTPUT_DIR = Path("static/videos")
59
+ VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
60
  VIDEO_EXAMPLES = [
61
+ {"path": "./examples/videos/traffic.mp4", "label": "Local Video"},
62
+ {"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video"},
63
+ {"path": "./examples/videos/break_dance.mp4", "label": "Local Video"},
64
  ]
 
65
 
66
  logging.basicConfig(
67
  level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
68
  )
69
  logger = logging.getLogger(__name__)
70
 
 
 
71
 
72
+ @lru_cache(maxsize=3)
73
+ def get_model_and_image_processor(checkpoint: str, device: str = "cpu"):
74
+ model = AutoModelForObjectDetection.from_pretrained(checkpoint, torch_dtype=TORCH_DTYPE).to(device)
75
+ image_processor = AutoImageProcessor.from_pretrained(checkpoint)
76
+ return model, image_processor
77
 
78
+ @spaces.GPU(duration=20)
79
  def detect_objects(
 
80
  checkpoint: str,
81
+ images: Optional[List[Image.Image]] = None,
82
  confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
83
+ target_sizes: Optional[List[Tuple[int, int]]] = None,
84
+ ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
+ device = "cuda" if torch.cuda.is_available() else "cpu"
87
+ model, image_processor = get_model_and_image_processor(checkpoint, device=device)
 
 
 
 
 
 
 
 
 
 
88
 
89
+ # preprocess images
90
+ inputs = image_processor(images=images, return_tensors="pt")
91
+ inputs = inputs.to(device).to(TORCH_DTYPE)
92
 
93
+ # forward pass
94
+ with torch.no_grad():
95
+ outputs = model(**inputs)
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
+ # postprocess outputs
98
+ if not target_sizes:
99
+ target_sizes = [(image.height, image.width) for image in images]
 
 
100
 
101
+ results = image_processor.post_process_object_detection(
102
+ outputs, target_sizes=target_sizes, threshold=confidence_threshold
103
+ )
104
+
105
+ return results, model.config.id2label
106
 
107
 
108
+ def process_image(
109
+ checkpoint: str = DEFAULT_CHECKPOINT,
110
+ image: Optional[Image.Image] = None,
111
+ url: Optional[str] = None,
112
+ confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
113
+ ):
114
 
115
+ if (image is None) ^ bool(url):
116
+ raise ValueError(f"Either image or url must be provided, but not both.")
117
+
118
+ if url:
119
+ image = load_image(url)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
+ results, id2label = detect_objects(
122
+ checkpoint=checkpoint,
123
+ images=[image],
124
+ confidence_threshold=confidence_threshold,
125
+ )
126
+ result = results[0] # first image in batch (we have batch size 1)
127
 
128
+ annotations = []
129
+ for label, score, box in zip(result["labels"], result["scores"], result["boxes"]):
130
+ text_label = id2label[label.item()]
131
+ formatted_label = f"{text_label} ({score:.2f})"
132
+ x_min, y_min, x_max, y_max = box.cpu().numpy().round().astype(int)
133
+ x_min = max(0, x_min)
134
+ y_min = max(0, y_min)
135
+ x_max = min(image.width - 1, x_max)
136
+ y_max = min(image.height - 1, y_max)
137
+ annotations.append(((x_min, y_min, x_max, y_max), formatted_label))
138
+
139
+ return (image, annotations)
140
+
141
+
142
+ def get_target_size(image_height, image_width, max_size: int):
143
+ if image_height < max_size and image_width < max_size:
144
+ return image_width, image_height
145
+ if image_height > image_width:
146
+ new_height = max_size
147
+ new_width = int(image_width * max_size / image_height)
148
+ else:
149
+ new_width = max_size
150
+ new_height = int(image_height * max_size / image_width)
151
+ return new_width, new_height
152
 
153
  def process_video(
154
  video_path: str,
155
  checkpoint: str,
156
  confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
157
  progress: gr.Progress = gr.Progress(track_tqdm=True),
158
+ ) -> str:
159
+
160
  if not video_path or not os.path.isfile(video_path):
161
+ raise ValueError(f"Invalid video path: {video_path}")
 
 
 
162
 
163
  ext = os.path.splitext(video_path)[1].lower()
164
  if ext not in ALLOWED_VIDEO_EXTENSIONS:
165
+ raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}")
166
+
167
+ cap = cv2.VideoCapture(video_path)
168
+ if not cap.isOpened():
169
+ raise ValueError(f"Failed to open video: {video_path}")
170
+
171
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
172
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
173
+ fps = cap.get(cv2.CAP_PROP_FPS)
174
+ num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
175
+
176
+ process_each_frame = fps // 25
177
+ target_fps = fps / process_each_frame
178
+ target_width, target_height = get_target_size(height, width, 1080)
179
+
180
+ # Use H.264 codec for browser compatibility
181
+ fourcc = cv2.VideoWriter_fourcc(*"MJPG")
182
+ temp_file = tempfile.NamedTemporaryFile(suffix=".avi", delete=False)
183
+ writer = cv2.VideoWriter(temp_file.name, fourcc, target_fps, (target_width, target_height))
184
+
185
+ box_annotator = sv.BoxAnnotator(thickness=1)
186
+ label_annotator = sv.LabelAnnotator(text_scale=0.5)
187
+
188
+ if not writer.isOpened():
189
+ cap.release()
190
+ temp_file.close()
191
+ os.unlink(temp_file.name)
192
+ raise ValueError("Failed to initialize video writer")
193
 
194
+ frames_to_process = int(min(MAX_NUM_FRAMES * process_each_frame, num_frames))
195
+ batch = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
+ for i in tqdm.tqdm(range(frames_to_process), desc="Processing video"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
199
+ ok, frame = cap.read()
200
+ if not ok:
201
+ break
202
 
203
+ if not i % process_each_frame == 0:
204
+ continue
 
 
 
 
 
 
205
 
206
+ if len(batch) < BATCH_SIZE:
207
+ frame = frame[:, :, ::-1].copy() # BGR to RGB
208
+ batch.append(frame)
209
+ continue
210
 
211
+ results, id2label = detect_objects(
212
+ images=[Image.fromarray(frame) for frame in batch],
213
+ checkpoint=checkpoint,
214
+ confidence_threshold=confidence_threshold,
215
+ target_sizes=[(target_height, target_width)] * len(batch),
 
 
 
 
 
 
 
 
 
 
 
 
216
  )
217
 
218
+ for frame, result in zip(batch, results):
219
+ frame = cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_AREA)
220
+ detections = sv.Detections.from_transformers(result, id2label=id2label)
221
+ detections = detections.with_nms(threshold=0.95, class_agnostic=True)
222
+ annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
223
+ annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
224
+ writer.write(cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR))
225
+
226
+ batch = []
227
+
228
+ writer.release()
229
+ cap.release()
230
+ temp_file.close()
231
+
232
+ # Copy to persistent directory for Gradio access
233
+ output_filename = f"output_{os.path.basename(temp_file.name)}"
234
+ output_path = VIDEO_OUTPUT_DIR / output_filename
235
+ shutil.copy(temp_file.name, output_path)
236
+ os.unlink(temp_file.name) # Remove temporary file
237
+ logger.info(f"Video saved to {output_path}")
238
+
239
+ return str(output_path)
240
+
241
+
242
 
243
  def create_image_inputs() -> List[gr.components.Component]:
244
  return [
 
329
  image_input,
330
  use_url,
331
  url_input,
332
+ image_model_checkpoint,
333
  image_confidence_threshold,
334
  ) = create_image_inputs()
335
  image_detect_button, image_clear_button = create_button_row(
 
342
  color_map=None,
343
  elem_classes="output-component",
344
  )
 
 
 
 
345
  gr.Examples(
346
  examples=[
347
  [
 
357
  image_input,
358
  use_url,
359
  url_input,
360
+ image_model_checkpoint,
361
  image_confidence_threshold,
362
  ],
363
+ outputs=[image_output],
364
+ fn=process_image,
365
  cache_examples=False,
366
  label="Select an image example to populate inputs",
367
  )
368
 
369
  with gr.Tab("Video"):
370
  gr.Markdown(
371
+ f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)."
372
  )
373
  with gr.Row():
374
  with gr.Column(scale=1, min_width=300):
 
385
  format="mp4", # Explicit MP4 format
386
  elem_classes="output-component",
387
  )
 
 
 
388
 
389
  gr.Examples(
390
  examples=[
 
392
  for example in VIDEO_EXAMPLES
393
  ],
394
  inputs=[video_input, video_checkpoint, video_confidence_threshold],
395
+ outputs=[video_output],
396
  fn=process_video,
397
  cache_examples=False,
398
  label="Select a video example to populate inputs",
 
414
  DEFAULT_CHECKPOINT,
415
  DEFAULT_CONFIDENCE_THRESHOLD,
416
  None,
 
417
  ),
418
  outputs=[
419
  image_input,
420
  use_url,
421
  url_input,
422
+ image_model_checkpoint,
423
  image_confidence_threshold,
424
  image_output,
 
425
  ],
426
  )
427
 
 
432
  DEFAULT_CHECKPOINT,
433
  DEFAULT_CONFIDENCE_THRESHOLD,
434
  None,
 
435
  ),
436
  outputs=[
437
  video_input,
438
  video_checkpoint,
439
  video_confidence_threshold,
440
  video_output,
 
441
  ],
442
  )
443
 
444
  # Image detect button
445
  image_detect_button.click(
446
+ fn=process_image,
447
  inputs=[
448
+ image_model_checkpoint,
449
  image_input,
 
 
 
450
  url_input,
451
+ image_confidence_threshold,
452
  ],
453
+ outputs=[image_output],
454
  )
455
 
456
  # Video detect button
457
  video_detect_button.click(
458
  fn=process_video,
459
  inputs=[video_input, video_checkpoint, video_confidence_threshold],
460
+ outputs=[video_output],
461
  )
462
 
463
  if __name__ == "__main__":
image.jpg → examples/images/crossroad.jpg RENAMED
File without changes
video.mp4 → examples/videos/break_dance.mp4 RENAMED
File without changes
examples/videos/fast_and_furious.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5980eada9d80c65b4da5b536427ccf8ff8ea2707ee3e4aa52fb2c4e1b1979dae
3
+ size 16872922
examples/videos/traffic.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71908c136bba6b50b9071fb2015553f651c91a7ee857924f33616c046011aaed
3
+ size 8591523
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ ffmpeg
requirements.txt CHANGED
@@ -2,6 +2,9 @@ gradio
2
  transformers @ git+https://github.com/huggingface/transformers
3
  torch
4
  torchvision
5
- opencv-python
 
6
  tqdm
7
- pillow
 
 
 
2
  transformers @ git+https://github.com/huggingface/transformers
3
  torch
4
  torchvision
5
+ opencv-python-headless
6
+ ffmpeg-python
7
  tqdm
8
+ pillow
9
+ supervision
10
+ spaces