Spaces:
Runtime error
Runtime error
File size: 15,009 Bytes
a168076 9fc12c1 a168076 9fc12c1 a168076 8a43e43 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 9fc12c1 a168076 f3c24fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import os
import re
import webbrowser
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError
from accelerate.commands.estimate import create_empty_model, check_has_model
from accelerate.utils import convert_bytes, calculate_maximum_sizes
# We need to store them as globals because gradio doesn't have a way for us to pass them in to the button
HAS_DISCUSSION = True
MODEL_NAME = None
LIBRARY = None
USER_TOKEN = None
TOKEN = os.environ.get("HUGGINGFACE_API_LOGIN", None)
def check_for_discussion(model_name:str):
"Checks if an automated discussion has been opened on the model by `model-sizer-bot`"
global TOKEN
api = HfApi(token=TOKEN)
discussions = list(api.get_repo_discussions(model_name))
return any(discussion.title == "[AUTOMATED] Model Memory Requirements" and discussion.author == "model-sizer-bot" for discussion in discussions)
def report_results():
"Reports the results of a memory calculation to the model's discussion page, and opens a new tab to it afterwards"
global MODEL_NAME, LIBRARY, TOKEN, USER_TOKEN
api = HfApi(token=TOKEN)
results, data = calculate_memory(MODEL_NAME, LIBRARY, ["fp32", "fp16", "int8", "int4"], access_token=USER_TOKEN, raw=True)
minimum = data[0]
USER_TOKEN = None
post = f"""# Model Memory Requirements\n
You will need about {minimum[1]} VRAM to load this model for inference, and {minimum[3]} VRAM to train it using Adam.
These calculations were measured from the [Model Memory Utility Space](https://hf.co/spaces/hf-accelerate/model-memory-utility) on the Hub.
The minimum recommended vRAM needed for this model assumes using [Accelerate or `device_map="auto"`](https://huggingface.co/docs/accelerate/usage_guides/big_modeling) and is denoted by the size of the "largest layer".
When performing inference, expect to add up to an additional 20% to this, as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). More tests will be performed in the future to get a more accurate benchmark for each model.
When training with `Adam`, you can expect roughly 4x the reported results to be used. (1x for the model, 1x for the gradients, and 2x for the optimizer).
## Results:
{results}
"""
discussion = api.create_discussion(MODEL_NAME, "[AUTOMATED] Model Memory Requirements", description=post)
webbrowser.open_new_tab(discussion.url)
def convert_url_to_name(url:str):
"Converts a model URL to its name on the Hub"
results = re.findall(r"huggingface.co\/(.*?)#", url)
if len(results) < 1:
raise ValueError(f"URL {url} is not a valid model URL to the Hugging Face Hub")
return results[0]
# Based on the following doc:
#
# - https://huggingface.co/docs/transformers/v4.31.0/perf_train_gpu_one#anatomy-of-models-memory
# - https://blog.eleuther.ai/transformer-math/
# - https://kipp.ly/transformer-inference-arithmetic/
# - https://github.com/ray-project/llm-numbers
#
def calc_vram_f32(model, optimizer, sequence_len, micro_batch_size, device_count, gradient_checkpointing):
# is_16bit = cfg.bf16 or cfg.bfloat16 or cfg.load_in_8bit or cfg.fp16 or cfg.float16
# if torch.cuda.device_count() > 1 or cfg.fsdp or os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true" or cfg.adapter:
# return { 'supported': False }
# Model Weights
#
# Hf doc counts:
#
# - 4 bytes * number of parameters for fp32 training
# - 6 bytes * number of parameters for mixed precision training (maintains a model in fp32 and one in fp16 in memory)
#
# But we follow https://blog.eleuther.ai/transformer-math/#model-weights to count 2 bytes here for mixed precision training,
# leave the rest to optimizor state.
#
# Here we calculate only for fp32, will adjust for each dtype outside.
#
# for param in model.parameters():
# print(f'{type(param)} {param.shape} {param.element_size()}')
#
# print(f'total parameters = {sum([param.nelement() for param in model.parameters()])}')
param_element_size = 4
vram_model = sum([param.nelement() * param_element_size for param in model.parameters()])
# Buffers
#
# Buffers are tensors that do not require gradients and not registered as parameters.
# e.g. mean and std in batch norm layers.
# - https://github.com/huggingface/transformers/blob/d4bd33cc9f11ca48635e54983d75249c78d72e2a/src/transformers/modeling_utils.py#L1897
# - https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2
#
# for buf in model.buffers():
# print(f'buf.element_size() = {buf.element_size()}')
vram_buffer = sum([buf.nelement() * buf.element_size() for buf in model.buffers()])
# Optimizer States:
# - 8 bytes * number of parameters for normal AdamW (maintains 2 states)
# - 2 bytes * number of parameters for 8-bit AdamW optimizers like bitsandbytes
# - 4 bytes * number of parameters for optimizers like SGD with momentum (maintains only 1 state)
#
# For now we use AdamW/SGD as the baseline for the estimation, even for other more memory-efficient optimizers
# ADAMW_HF = "adamw_hf"
# ADAMW_TORCH = "adamw_torch"
# ADAMW_TORCH_FUSED = "adamw_torch_fused"
# ADAMW_TORCH_XLA = "adamw_torch_xla"
# ADAMW_APEX_FUSED = "adamw_apex_fused"
# ADAFACTOR = "adafactor"
# ADAMW_ANYPRECISION = "adamw_anyprecision"
# SGD = "sgd"
# ADAGRAD = "adagrad"
# ADAMW_BNB = "adamw_bnb_8bit"
# ADAMW_8BIT = "adamw_8bit" # just an alias for adamw_bnb_8bit
# LION_8BIT = "lion_8bit"
# LION = "lion_32bit"
# PAGED_ADAMW = "paged_adamw_32bit"
# PAGED_ADAMW_8BIT = "paged_adamw_8bit"
# PAGED_LION = "paged_lion_32bit"
# PAGED_LION_8BIT = "paged_lion_8bit"
# optimizer = cfg.optimizer
optimizer_state_size_per_param = 4 if 'sgd' in optimizer else (2 if '8bit' in optimizer else 8)
vram_optimizer = sum([param.nelement() * optimizer_state_size_per_param for param in model.parameters()])
# Gradients
#
# 4 bytes * number of parameters for either fp32 or mixed precision training (gradients are always kept in fp32)
# but we will follow transformer-math to treat it conditionally outside
# for now we ignores whether is mixed precision training
#
gradient_element_size = 4 # 2 if is_16bit else 4
vram_gradient = sum([param.nelement() * gradient_element_size for param in model.parameters()])
# Forward Activations
# size depends on many factors, the key ones being sequence length, hidden size and batch size.
s = sequence_len # cfg.sequence_len
b = micro_batch_size # cfg.micro_batch_size
h = model.config.hidden_size
L = model.config.num_hidden_layers
t = device_count # max(1, torch.cuda.device_count()) # len(DataParallel(model).device_ids) #torch.cuda.device_count()
a = model.config.num_attention_heads
print(f's={s} b={b} h={h} L={L} t={t} a={a}')
sbHL = s * b * h * L
print(f'sbHL = {sbHL / 1e9} GB')
print(f'10 + {24 / t} + {5 * a * s / (h * t)}')
vram_activation = sbHL * (10 + 24 / t) if gradient_checkpointing else sbHL * (10 + 24 / t + 5 * a * s / (h * t))
return {
# 'supported': True,
'param_element_size': param_element_size,
'total': vram_model + vram_buffer + vram_optimizer + vram_activation,
'model': vram_model,
'buffer': vram_buffer,
'optimizer': vram_optimizer,
'activation': vram_activation,
}
def bytes_by_dtype(bytes, dtype):
if dtype in ("fp16", "bf16", "float16/bfloat16"):
return bytes / 2
elif dtype == "int8":
return bytes / 4
elif dtype == "int4":
return bytes / 8
else:
return bytes
def calculate_memory(model_name:str, library:str, dtypes:list, optimizer:str, access_token:str, raw=False):
"Calculates the memory usage for a model"
if library == "auto":
library = None
if "http" in model_name and "//" in model_name:
try:
model_name = convert_url_to_name(model_name)
except ValueError:
raise gr.Error(f"URL `{model_name}` is not a valid model URL to the Hugging Face Hub")
try:
model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token)
except GatedRepoError:
raise gr.Error(f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access. You can find your access token here : https://huggingface.co/settings/tokens. ")
except RepositoryNotFoundError:
raise gr.Error(f"Model `{model_name}` was not found on the Hub, please try another model name.")
except ValueError as e:
raise gr.Error(f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)")
except (RuntimeError, OSError) as e:
library = check_has_model(e)
if library != "unknown":
raise gr.Error(f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo.")
total_size, largest_layer = calculate_maximum_sizes(model)
data = []
title = f"Memory Usage for '{model_name}'"
vram_f32 = calc_vram_f32(model, optimizer=optimizer, sequence_len=2048, micro_batch_size=1, device_count=1, gradient_checkpointing=True)
for dtype in dtypes:
param_element_size = bytes_by_dtype(vram_f32['param_element_size'], dtype)
vram_model = bytes_by_dtype(vram_f32['model'], dtype)
vram_buffer = vram_f32['buffer']
vram_optimizer = vram_f32['optimizer']
vram_activation = vram_f32['activation']
row = {
"dtype": dtype,
'inference_total': convert_bytes(vram_model),
'training_total': convert_bytes(vram_model + vram_buffer + vram_optimizer + vram_activation),
'model': convert_bytes(vram_model),
'buffer': convert_bytes(vram_buffer),
'optimizer': convert_bytes(vram_optimizer),
'activation': convert_bytes(vram_activation),
}
data.append(row)
# dtype_total_size = total_size
# dtype_largest_layer = largest_layer[0]
# if dtype in ("fp16", "bf16", "float16/bfloat16"):
# dtype_total_size /= 2
# dtype_largest_layer /= 2
# elif dtype == "int8":
# dtype_total_size /= 4
# dtype_largest_layer /= 4
# elif dtype == "int4":
# dtype_total_size /= 8
# dtype_largest_layer /= 8
# dtype_training_size = convert_bytes(dtype_total_size * 4)
# dtype_total_size = convert_bytes(dtype_total_size)
# dtype_largest_layer = convert_bytes(dtype_largest_layer)
# data.append({
# "dtype": dtype,
# "Largest Layer or Residual Group": dtype_largest_layer,
# "Total Size": dtype_total_size,
# "Training using Adam": dtype_training_size,
# "Test": 12345
# })
# data.append({
# "dtype": dtype,
# "Largest Layer or Residual Group": dtype_largest_layer,
# "Total Size": dtype_total_size,
# "Training using Adam": dtype_training_size,
# "Test": 12345
# })
global HAS_DISCUSSION, MODEL_NAME, LIBRARY
HAS_DISCUSSION = check_for_discussion(model_name)
MODEL_NAME = model_name
LIBRARY = library
if raw:
return pd.DataFrame(data).to_markdown(index=False), data
results = [
f'## {title}',
gr.update(visible=True, value=pd.DataFrame(data)),
# gr.update(visible=not HAS_DISCUSSION)
]
return results
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(
"""<img src="https://huggingface.co/spaces/hf-accelerate/model-memory-usage/resolve/main/measure_model_size.png" style="float: left;" width="250" height="250"><h1>🤗 Model Memory Calculator</h1>
This tool is modified from https://huggingface.co/spaces/hf-accelerate/model-memory-usage with the following changes:
- Focus on transformers and gives more detailed estimation based on more configs
- Will auto-calculate the proper batch size given a VRAM constraint later
- LoRA/QLoRA etc. will be supported later
Note:
- inference_total = model
- training_total = model + buffer + optimizer + activation
"""
)
out_text = gr.Markdown()
out = gr.DataFrame(headers=[
"dtype",
'inference_total',
'training_total',
'model',
'buffer',
'optimizer',
'activation',
],
interactive=False,
visible=False,
)
with gr.Row():
inp = gr.Textbox(label="Model Name or URL", value="bert-base-cased")
with gr.Row():
library = gr.Radio(["transformers"], label="Library", value="transformers")
dtypes = gr.CheckboxGroup(
["float32", "float16/bfloat16", "int8", "int4"],
value=["float32", "float16/bfloat16", "int8", "int4"],
label="Model Precision",
)
# ADAMW_HF = "adamw_hf"
# ADAMW_TORCH = "adamw_torch"
# ADAMW_TORCH_FUSED = "adamw_torch_fused"
# ADAMW_TORCH_XLA = "adamw_torch_xla"
# ADAMW_APEX_FUSED = "adamw_apex_fused"
# ADAFACTOR = "adafactor"
# ADAMW_ANYPRECISION = "adamw_anyprecision"
# SGD = "sgd"
# ADAGRAD = "adagrad"
# ADAMW_BNB = "adamw_bnb_8bit"
# ADAMW_8BIT = "adamw_8bit" # just an alias for adamw_bnb_8bit
# LION_8BIT = "lion_8bit"
# LION = "lion_32bit"
# PAGED_ADAMW = "paged_adamw_32bit"
# PAGED_ADAMW_8BIT = "paged_adamw_8bit"
# PAGED_LION = "paged_lion_32bit"
# PAGED_LION_8BIT = "paged_lion_8bit"
optimizer = gr.Dropdown(choices=["adamw_hf", "adamw_torch", "sgd", "lion_32bit", "adamw_8bit", "lion_8bit", "paged_adamw_8bit", "paged_lion_8bit"],
value="adamw_hf", label="Optimizer", allow_custom_value=True)
access_token = gr.Textbox(label="API Token", placeholder="Optional (for gated models)")
with gr.Row():
btn = gr.Button("Calculate Memory Usage")
# post_to_hub = gr.Button(value = "Report results in this model repo's discussions!\n(Will open in a new tab)", visible=False)
USER_TOKEN = access_token
btn.click(
calculate_memory, inputs=[inp, library, dtypes, optimizer, access_token], outputs=[out_text, out],
)
# post_to_hub.click(report_results).then(lambda: gr.Button.update(visible=False), outputs=post_to_hub)
demo.launch() # (share=True, inline=False, debug=True) |