Spaces:
Sleeping
Sleeping
File size: 10,943 Bytes
de9bf37 b763f5e de9bf37 5a4b85a de9bf37 5a4b85a de9bf37 5a4b85a de9bf37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import streamlit as st
import time
import datetime
import random
import os
from typing import List
from langchain.callbacks import get_openai_callback
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage,
BaseMessage,
)
#-----------------------------------------------------------------------
# from dotenv import find_dotenv, load_dotenv
# # Load environment variables
# load_dotenv(find_dotenv())
#----------------------------------------------------------------------
# Define agent class
class CAMELAgent:
def __init__(
self,
system_message: SystemMessage,
model: ChatOpenAI,
) -> None:
self.system_message = system_message
self.model = model
self.init_messages()
def reset(self) -> None:
self.init_messages()
return self.stored_messages
def init_messages(self) -> None:
self.stored_messages = [self.system_message]
def update_messages(self, message: BaseMessage) -> List[BaseMessage]:
self.stored_messages.append(message)
# print(self.stored_messages)
return self.stored_messages
def step(
self,
input_message: HumanMessage,
) -> AIMessage:
messages = self.update_messages(input_message)
output_message = self.model(messages)
self.update_messages(output_message)
return output_message
# Inception templates
assistant_inception_prompt = (
"""Never forget you are a {assistant_role_name} and I am a {user_role_name}. Never flip roles!
We share a common interest in collaborating to successfully complete a task.
You must help me to complete the task.
Here is the task: {task}. Never forget our task!
I will instruct you based on your expertise and my needs to complete the task.
I must give you one question at a time.
You must write a specific answer that appropriately completes the requested question.
You must decline my question honestly if you cannot comply the question due to physical, moral, legal reasons or your capability and explain the reasons.
Do not add anything else other than your answer to my instruction.
Unless I say the task is completed, you should always start with:
My response: <YOUR_SOLUTION>
<YOUR_SOLUTION> should be specific and descriptive.
Always end <YOUR_SOLUTION> with: Next question."""
)
user_inception_prompt = (
"""Never forget you are a {user_role_name} and I am a {assistant_role_name}. Never flip roles! You will always ask me.
We share a common interest in collaborating to successfully complete a task.
I must help you to answer the questions.
Here is the task: {task}. Never forget our task!
You must instruct me based on my expertise and your needs to complete the task ONLY in the following two ways:
1. Instruct with a necessary input:
Instruction: <YOUR_INSTRUCTION>
Input: <YOUR_INPUT>
2. Instruct without any input:
Instruction: <YOUR_INSTRUCTION>
Input: None
The "Instruction" describes a task or question. The paired "Input" provides further context or information for the requested "Instruction".
You must give me one instruction at a time.
I must write a response that appropriately completes the requested instruction.
I must decline your instruction honestly if I cannot perform the instruction due to physical, moral, legal reasons or my capability and explain the reasons.
You should instruct me not ask me questions.
Now you must start to instruct me using the two ways described above.
Do not add anything else other than your instruction and the optional corresponding input!
Keep giving me instructions and necessary inputs until you think the task is completed.
When the task is completed, you must only reply with a single word <TASK_DONE>.
Never say <TASK_DONE> unless my responses have solved your task."""
)
def get_sys_msgs(assistant_role_name: str, user_role_name: str, task: str):
"""
A helper functioın to get system messages for AI assistant and AI user from role names and the task
- SystemMessage: the guidance
- HumanMessage: input
- AIMessage: the agent output/response
"""
assistant_sys_template = SystemMessagePromptTemplate.from_template(template=assistant_inception_prompt)
assistant_sys_msg = assistant_sys_template.format_messages(assistant_role_name=assistant_role_name, user_role_name=user_role_name, task=task)[0]
user_sys_template = SystemMessagePromptTemplate.from_template(template=user_inception_prompt)
user_sys_msg = user_sys_template.format_messages(assistant_role_name=assistant_role_name, user_role_name=user_role_name, task=task)[0]
return assistant_sys_msg, user_sys_msg
def write_conversation_to_file(conversation, filename):
"""
Write a conversation to a text file with a timestamp in its filename.
Parameters:
conversation (list): A list of tuples. Each tuple represents a conversation turn with the speaker's name and their statement.
filename (str): The name of the file to write the conversation to.
Returns:
None
"""
def timestamp():
"""
Convert the current date and time into a custom timestamp format.
Returns:
str: The current date and time in the format HHMMDDMMYYYY.
"""
# Get the current date and time
now = datetime.datetime.now()
# Format the date and time as a string in the desired format
timestamp = now.strftime("%H%M%d%m%Y")
return timestamp
def append_timestamp_to_filename(filename):
"""
Append a timestamp to a filename before the extension.
Parameters:
filename (str): The original filename.
Returns:
str: The filename with a timestamp appended.
"""
# Split the filename into the base and extension
base, extension = os.path.splitext(filename)
# Append the timestamp to the base and add the extension back on
new_filename = f"{base}-{timestamp()}{extension}"
return new_filename
# Append timestamp to the filename
filename = append_timestamp_to_filename(filename)
with open(filename, 'w') as f:
for turn in conversation:
speaker, statement = turn
f.write(f"{speaker}: {statement}\n\n")
def get_specified_task(assistant_role_name: str, user_role_name: str, task: str, word_limit: int) -> str:
task_specifier_sys_msg = SystemMessage(content="You can make a task more specific.")
task_specifier_prompt = (
"""Here is a task that {assistant_role_name} will discuss with {user_role_name} to : {task}.
Please make it more specific. Be creative and imaginative.
Please reply with the full task in {word_limit} words or less. Do not add anything else."""
)
# Ask agent to expand on the task
task_specifier_template = HumanMessagePromptTemplate.from_template(template=task_specifier_prompt)
task_specify_agent = CAMELAgent(task_specifier_sys_msg, ChatOpenAI(temperature=0.7))
task_specifier_msg = task_specifier_template.format_messages(assistant_role_name=assistant_role_name,
user_role_name=user_role_name,
task=task,
word_limit=word_limit)[0]
specified_task_msg = task_specify_agent.step(task_specifier_msg)
print(f"Specified task: {specified_task_msg.content}")
return specified_task_msg.content
specified_task = None
stop = False
st.title("PersonaChat")
with st.container():
assistant_role_name = st.text_input("Assistant-AI", value="Singapore Tourism Board")
user_role_name = st.text_input("User-AI", value="Tourist that has never been to Singapore")
task = st.text_input("Task", value="Discuss the best tourist attractions to see in Singapore")
word_limit = st.slider("Word limit", min_value=0, max_value=50, value=15)
chat_turn_limit = st.slider("Max. Messages", min_value=0, max_value=30, value=10)
with st.container():
chat_container = st.empty()
with st.container():
# tab = st.tabs(1)
# with tab:
stop_button = st.button("Stop")
gen_button = st.button("Generate Task")
init_button = st.button("Initialize Agents")
if gen_button:
specified_task = get_specified_task(assistant_role_name, user_role_name, task, word_limit)
with chat_container.container():
task = st.text_input("Task", value=specified_task)
if stop_button:
stop = True
st.stop()
if init_button:
# Initialize agents
assistant_sys_msg, user_sys_msg = get_sys_msgs(assistant_role_name, user_role_name, task)
assistant_agent = CAMELAgent(assistant_sys_msg, ChatOpenAI(temperature=0.2))
user_agent = CAMELAgent(user_sys_msg, ChatOpenAI(temperature=0.2))
# Reset agents
assistant_agent.reset()
user_agent.reset()
# Initialize chats
assistant_msg = HumanMessage(content=(f"{user_sys_msg.content}. "
"Now start to give me introductions one by one. "
"Only reply with Instruction and Input.")
)
user_msg = HumanMessage(content=f"{assistant_sys_msg.content}")
user_msg = assistant_agent.step(user_msg)
conversation = []
with st.expander("See explanation"):
with chat_container.container():
with get_openai_callback() as cb:
n = 0
while n < chat_turn_limit and not stop:
n += 1
user_ai_msg = user_agent.step(assistant_msg)
user_msg = HumanMessage(content=user_ai_msg.content)
st.write(f"AI User ({user_role_name}):\n\n{user_msg.content}\n\n")
conversation.append((user_role_name,user_msg.content))
assistant_ai_msg = assistant_agent.step(user_msg)
assistant_msg = HumanMessage(content=assistant_ai_msg.content)
st.write(f"AI Assistant ({assistant_role_name}):\n\n{assistant_msg.content}\n\n")
conversation.append((assistant_role_name,assistant_msg.content))
if "<TASK_DONE>" in user_msg.content:
break
time.sleep(1)
st.write(f"Total Successful Requests: {cb.successful_requests}")
st.write(f"Total Tokens Used: {cb.total_tokens}")
st.write(f"Prompt Tokens: {cb.prompt_tokens}")
st.write(f"Completion Tokens: {cb.completion_tokens}")
st.write(f"Total Cost (USD): ${cb.total_cost}")
write_conversation_to_file(conversation, 'conversation.txt')
|