Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, jsonify, render_template, request, send_file
|
2 |
+
from langchain import OpenAI
|
3 |
+
from langchain.docstore.document import Document
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.chains.summarize import load_summarize_chain
|
6 |
+
|
7 |
+
|
8 |
+
app = Flask(__name__)
|
9 |
+
@app.route("/")
|
10 |
+
def t5(txt):
|
11 |
+
# Instantiate the LLM model
|
12 |
+
llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
|
13 |
+
# Split text
|
14 |
+
text_splitter = CharacterTextSplitter()
|
15 |
+
texts = text_splitter.split_text(txt)
|
16 |
+
# Create multiple documents
|
17 |
+
docs = [Document(page_content=t) for t in texts]
|
18 |
+
# Text summarization
|
19 |
+
chain = load_summarize_chain(llm, chain_type='map_reduce')
|
20 |
+
output = chain.run(docs)
|
21 |
+
|
22 |
+
return jsonify({"output": output})
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
app.run(host="0.0.0.0", port=7860)
|