Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,21 @@
|
|
1 |
-
import
|
2 |
-
from langchain.
|
3 |
-
from
|
4 |
-
from
|
5 |
|
6 |
# Define your API key for OpenAI or any other LLM provider
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
llm = OpenAI(api_key=openai_api_key)
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
llm=llm,
|
15 |
-
prompt_template=PromptTemplate(
|
16 |
-
input_variables=["user_input"],
|
17 |
-
template="User: {user_input}\nBot:"
|
18 |
-
)
|
19 |
-
)
|
20 |
-
|
21 |
-
def chat_with_json(input_json):
|
22 |
-
# Parse the input JSON
|
23 |
-
input_data = json.loads(input_json)
|
24 |
-
user_input = input_data.get('message', '')
|
25 |
-
|
26 |
-
# Generate a response using the chat chain
|
27 |
-
response = chat_chain.run(user_input)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
user_input_json = json.dumps({'message': 'Hello, how are you?'})
|
37 |
-
|
38 |
-
# Get the response from the chatbot
|
39 |
-
response_json = chat_with_json(user_input_json)
|
40 |
-
|
41 |
-
# Print the response JSON
|
42 |
-
print(response_json)
|
|
|
1 |
+
from langchain import hub
|
2 |
+
from langchain.agents import AgentExecutor, create_json_chat_agent
|
3 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
4 |
+
from langchain_openai import ChatOpenAI
|
5 |
|
6 |
# Define your API key for OpenAI or any other LLM provider
|
7 |
+
OPENAI_API_KEY = 'sk-nAqoChT9cmkAxALwMLdWT3BIbkFJcNHsH5Z5LN2ixPcDAopT'
|
8 |
+
openai.api_key=OPENAI_API_KEY
|
9 |
|
10 |
+
tools = [TavilySearchResults(max_results=1)]
|
|
|
11 |
|
12 |
+
# Choose the LLM that will drive the agent
|
13 |
+
llm = ChatOpenAI(openai_api_key=openai.api_key,temperature=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Construct the JSON agent
|
16 |
+
agent = create_json_chat_agent(llm, tools, prompt)
|
17 |
+
# Create an agent executor by passing in the agent and tools
|
18 |
+
agent_executor = AgentExecutor(
|
19 |
+
agent=agent, tools=tools, verbose=True, handle_parsing_errors=True
|
20 |
+
)
|
21 |
+
agent_executor.invoke({"input": "what is LangChain?"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|