File size: 1,714 Bytes
b63e06b 2b7682b b63e06b 2b7682b 3f6c8e2 f089529 4fa7d03 f089529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
title: News Summarisation And Sentiment Analysis
emoji: 🔥
colorFrom: yellow
colorTo: blue
sdk: streamlit
sdk_version: 1.43.2
app_file: app.py
pinned: false
short_description: ' Fetch the articles of the given company name '
---
# News_Summarisation_Sentiment_Analysis
This is a web-based application that extracts key details from multiple news articles related to a given company, performs sentiment analysis, conducts a comparative analysis, and generates a text-to-speech (TTS) output in Hindi.
## Features
- Company-specific news extraction
- Advanced text summarization using Pegasus model
- Sentiment analysis with Hugging Face Model
- Topic extraction using LDA
- Comparative sentiment analysis
- Text-to-speech conversion in Hindi
- User-friendly Streamlit interface
## Project Structure
## Installation
1. Create a virtual environment:
```bash
python -m venv myenv
# Windows
myenv\Scripts\activate
```
2. Install dependencies:
``` bash
pip install -r requirements.txt
```
3. Run the application
```
streamlit run app.py
```
4. Usage
```
##Enter a company name and click "Analyze" to get:
-->News articles
-->Summaries
-->Sentiment analysis
-->Topic distribution
-->Comparative analysis
-->Audio output in Hindi
##Technical Details
-->Frontend: Streamlit
-->NLP Models:
-->Pegasus for summarization
-->FinBERT for sentiment analysis
-->LDA for topic modeling
-->Audio Processing: GTTS for text-to-speech
-->Backend: FastAPI
##Requirements
-->Python 3.8+
-->CUDA (optional for GPU acceleration)
-->Internet connection for model downloads
##License
-->MIT License
##Acknowledgments
-->Hugging Face for NLP models
-->Streamlit for web interface
-->NLTK for text processing
```
|