File size: 7,827 Bytes
b396e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# import json
# import time
# from utils.news_extraction_api import fetch_articles
# from utils.news_summarisation import summarize_text
# from utils.news_sentiment import analyze_sentiment
# from utils.topic_extraction import preprocess_text, train_lda, extract_topic_words
# from utils.comparative_analysis import comparative_sentiment_analysis
# from utils.text_to_speech import text_to_speech

# def main():
#     company = input("Enter the company name for analysis: ").strip()

#     # Extract news articles
#     start_time = time.time()
#     articles = fetch_articles(company, num_articles=2)  # Fetch 2    articles
#     extraction_time = time.time() - start_time
#     print(f"✅ Articles extracted in {extraction_time:.2f} seconds")

#     if not articles:
#         print("⚠️ No news articles found. Try a different company.")
#         return

#     articles_data = []
#     all_topics = []  # Collect all topics for better analysis

#     for article in articles:
#         text = article.get("content", "").strip()

#         if not text:
#             print(f"⚠️ Skipping article '{article.get('title', 'No Title')}' due to missing content.")
#             continue

#         # Perform sentiment analysis
#         start_time = time.time()
#         sentiment_result = analyze_sentiment([text])
#         sentiment = sentiment_result.get("Predicted Sentiment", ["Unknown"])[0]
#         sentiment_time = time.time() - start_time
#         print(f"✅ Sentiment analysis completed in {sentiment_time:.2f} seconds")

#         # Summarize the article
#         start_time = time.time()
#         summary = summarize_text(text)
#         summary_time = time.time() - start_time
#         print(f"✅ Summary generation completed in {summary_time:.2f} seconds")

#         # Extract topics
#         start_time = time.time()
#         preprocessed_text = preprocess_text([text])
#         if not preprocessed_text:
#             print(f"⚠️ No meaningful text extracted for LDA topic modeling in '{article.get('title', 'No Title')}'.")
#             topic_words = []
#         else:
#             lda_model, dictionary = train_lda(preprocessed_text)
#             topic_words = extract_topic_words(lda_model)
#             topic_time = time.time() - start_time       
#             print(f"✅ Topic extraction completed in {topic_time:.2f} seconds")

#         # Store processed data
#         articles_data.append({
#             "Title": article.get("title", "No Title"),
#             "Summary": summary,
#             "Sentiment": sentiment,
#             "Topics": topic_words if topic_words else []
#         })

#         # Collect topics for comparative analysis
#         if topic_words:
#             all_topics.extend(topic_words)

#     # Ensure articles_data is not empty before analysis
#     if not articles_data:
#         print("⚠️ No valid articles with content were processed.")
#         return

#     # Perform comparative sentiment analysis
#     start_time = time.time()
#     analysis_result = comparative_sentiment_analysis(company, articles_data)
#     analysis_time = time.time() - start_time
#     print(f"✅ Comparative sentiment analysis completed in {analysis_time:.2f} seconds")

#     # Correctly extract "Comparative Sentiment Score"
#     comparative_score = analysis_result.get("Comparative Sentiment Score", {})

#     sentiment_distribution = comparative_score.get("Sentiment Distribution", {})
#     coverage_differences = comparative_score.get("Coverage Differences", {})
#     topic_overlap = comparative_score.get("Topic Overlap", [])

#     # Debugging check
#     if not sentiment_distribution:
#         print("⚠️ No sentiment distribution detected.")
#     if not coverage_differences:
#         print("⚠️ No coverage differences found.")
#     if not topic_overlap:
#         print("⚠️ No topic overlap detected among articles.")

#     # Final sentiment summary
#     final_sentiment_analysis = analysis_result.get("Final Sentiment Analysis", "Analysis could not be completed.")

#     # Generate summary speech
#     start_time = time.time()
#     final_summary = f"{company}’s latest news coverage is mostly {final_sentiment_analysis}."
#     audio_file = text_to_speech(final_summary)
#     audio_time = time.time() - start_time
#     print(f"✅ Summary speech generation completed in {audio_time:.2f} seconds")

#     # Construct final JSON output
#     output = {
#         "Company": company,
#         "Articles": articles_data,
#         "Comparative Sentiment Score": {
#             "Sentiment Distribution": sentiment_distribution,
#             "Coverage Differences": coverage_differences,
#             "Topic Overlap": topic_overlap
#         },
#         "Extracted Topics": list(set(all_topics)),  # Unique topics across articles
#         "Final Sentiment Analysis": final_summary,
#         "Audio": f"[Play {audio_file}]"
#     }

#     # Print JSON output
#     print(json.dumps(output, indent=4, ensure_ascii=False))

#     # Save JSON output
#     with open(f"{company}_news_analysis.json", "w", encoding="utf-8") as json_file:
#         json.dump(output, json_file, indent=4, ensure_ascii=False)

# if __name__ == "__main__":
#     main()


import json
import time
from utils.news_extraction_api import extract_news
from utils.news_summarisation import summarize_text
from utils.news_sentiment import analyze_sentiment
from utils.topic_extraction import preprocess_text, train_lda, extract_topic_words
from utils.comparative_analysis import comparative_sentiment_analysis
from utils.text_to_speech import text_to_speech  

def analyze_company_news(company):
    # Extract news articles
    start_time = time.time()
    articles = extract_news(company)
    extraction_time = time.time() - start_time

    if not articles:
        return {"message": "No news articles found. Try a different company."}

    articles_data = []  # List to store processed articles

    # Extract texts from articles for sentiment analysis
    texts = [article["content"] for article in articles]

    # Perform sentiment analysis
    start_time = time.time()
    sentiment_results = analyze_sentiment(texts)
    sentiment_time = time.time() - start_time

    # Process each article
    for i, (article, sentiment) in enumerate(zip(articles, sentiment_results["Predicted Sentiment"]), start=1):
        start_time = time.time()
        summary = summarize_text(article["content"])  # Summarize article
        summarization_time = time.time() - start_time

        # Extract topics for the specific article
        preprocessed_text = preprocess_text([article["content"]])
        lda_model, dictionary = train_lda(preprocessed_text)
        topic_words = extract_topic_words(lda_model)

        article_entry = {
            "Title": article["title"],
            "Summary": summary,
            "Sentiment": sentiment,
            "Topics": topic_words
        }
        articles_data.append(article_entry)

    # Perform comparative sentiment analysis
    analysis_result = comparative_sentiment_analysis(company, articles_data)

    # Generate a summary speech for the entire report
    final_summary = f"{company}’s latest news coverage is mostly {analysis_result['Final Sentiment Analysis']}."
    audio_file = text_to_speech(final_summary)  # Generate TTS

    # Construct final JSON output
    output = {
        "Company": company,
        "Articles": articles_data,
        "Comparative Sentiment Score": analysis_result,
        "Audio": f"[Play {audio_file}]"  # Include a playable reference
    }

    return output

if __name__ == "__main__":
    company = input("Enter the company name for analysis: ").strip()
    result = analyze_company_news(company)
    print(json.dumps(result, indent=4, ensure_ascii=False))