File size: 7,827 Bytes
b396e94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# import json
# import time
# from utils.news_extraction_api import fetch_articles
# from utils.news_summarisation import summarize_text
# from utils.news_sentiment import analyze_sentiment
# from utils.topic_extraction import preprocess_text, train_lda, extract_topic_words
# from utils.comparative_analysis import comparative_sentiment_analysis
# from utils.text_to_speech import text_to_speech
# def main():
# company = input("Enter the company name for analysis: ").strip()
# # Extract news articles
# start_time = time.time()
# articles = fetch_articles(company, num_articles=2) # Fetch 2 articles
# extraction_time = time.time() - start_time
# print(f"✅ Articles extracted in {extraction_time:.2f} seconds")
# if not articles:
# print("⚠️ No news articles found. Try a different company.")
# return
# articles_data = []
# all_topics = [] # Collect all topics for better analysis
# for article in articles:
# text = article.get("content", "").strip()
# if not text:
# print(f"⚠️ Skipping article '{article.get('title', 'No Title')}' due to missing content.")
# continue
# # Perform sentiment analysis
# start_time = time.time()
# sentiment_result = analyze_sentiment([text])
# sentiment = sentiment_result.get("Predicted Sentiment", ["Unknown"])[0]
# sentiment_time = time.time() - start_time
# print(f"✅ Sentiment analysis completed in {sentiment_time:.2f} seconds")
# # Summarize the article
# start_time = time.time()
# summary = summarize_text(text)
# summary_time = time.time() - start_time
# print(f"✅ Summary generation completed in {summary_time:.2f} seconds")
# # Extract topics
# start_time = time.time()
# preprocessed_text = preprocess_text([text])
# if not preprocessed_text:
# print(f"⚠️ No meaningful text extracted for LDA topic modeling in '{article.get('title', 'No Title')}'.")
# topic_words = []
# else:
# lda_model, dictionary = train_lda(preprocessed_text)
# topic_words = extract_topic_words(lda_model)
# topic_time = time.time() - start_time
# print(f"✅ Topic extraction completed in {topic_time:.2f} seconds")
# # Store processed data
# articles_data.append({
# "Title": article.get("title", "No Title"),
# "Summary": summary,
# "Sentiment": sentiment,
# "Topics": topic_words if topic_words else []
# })
# # Collect topics for comparative analysis
# if topic_words:
# all_topics.extend(topic_words)
# # Ensure articles_data is not empty before analysis
# if not articles_data:
# print("⚠️ No valid articles with content were processed.")
# return
# # Perform comparative sentiment analysis
# start_time = time.time()
# analysis_result = comparative_sentiment_analysis(company, articles_data)
# analysis_time = time.time() - start_time
# print(f"✅ Comparative sentiment analysis completed in {analysis_time:.2f} seconds")
# # Correctly extract "Comparative Sentiment Score"
# comparative_score = analysis_result.get("Comparative Sentiment Score", {})
# sentiment_distribution = comparative_score.get("Sentiment Distribution", {})
# coverage_differences = comparative_score.get("Coverage Differences", {})
# topic_overlap = comparative_score.get("Topic Overlap", [])
# # Debugging check
# if not sentiment_distribution:
# print("⚠️ No sentiment distribution detected.")
# if not coverage_differences:
# print("⚠️ No coverage differences found.")
# if not topic_overlap:
# print("⚠️ No topic overlap detected among articles.")
# # Final sentiment summary
# final_sentiment_analysis = analysis_result.get("Final Sentiment Analysis", "Analysis could not be completed.")
# # Generate summary speech
# start_time = time.time()
# final_summary = f"{company}’s latest news coverage is mostly {final_sentiment_analysis}."
# audio_file = text_to_speech(final_summary)
# audio_time = time.time() - start_time
# print(f"✅ Summary speech generation completed in {audio_time:.2f} seconds")
# # Construct final JSON output
# output = {
# "Company": company,
# "Articles": articles_data,
# "Comparative Sentiment Score": {
# "Sentiment Distribution": sentiment_distribution,
# "Coverage Differences": coverage_differences,
# "Topic Overlap": topic_overlap
# },
# "Extracted Topics": list(set(all_topics)), # Unique topics across articles
# "Final Sentiment Analysis": final_summary,
# "Audio": f"[Play {audio_file}]"
# }
# # Print JSON output
# print(json.dumps(output, indent=4, ensure_ascii=False))
# # Save JSON output
# with open(f"{company}_news_analysis.json", "w", encoding="utf-8") as json_file:
# json.dump(output, json_file, indent=4, ensure_ascii=False)
# if __name__ == "__main__":
# main()
import json
import time
from utils.news_extraction_api import extract_news
from utils.news_summarisation import summarize_text
from utils.news_sentiment import analyze_sentiment
from utils.topic_extraction import preprocess_text, train_lda, extract_topic_words
from utils.comparative_analysis import comparative_sentiment_analysis
from utils.text_to_speech import text_to_speech
def analyze_company_news(company):
# Extract news articles
start_time = time.time()
articles = extract_news(company)
extraction_time = time.time() - start_time
if not articles:
return {"message": "No news articles found. Try a different company."}
articles_data = [] # List to store processed articles
# Extract texts from articles for sentiment analysis
texts = [article["content"] for article in articles]
# Perform sentiment analysis
start_time = time.time()
sentiment_results = analyze_sentiment(texts)
sentiment_time = time.time() - start_time
# Process each article
for i, (article, sentiment) in enumerate(zip(articles, sentiment_results["Predicted Sentiment"]), start=1):
start_time = time.time()
summary = summarize_text(article["content"]) # Summarize article
summarization_time = time.time() - start_time
# Extract topics for the specific article
preprocessed_text = preprocess_text([article["content"]])
lda_model, dictionary = train_lda(preprocessed_text)
topic_words = extract_topic_words(lda_model)
article_entry = {
"Title": article["title"],
"Summary": summary,
"Sentiment": sentiment,
"Topics": topic_words
}
articles_data.append(article_entry)
# Perform comparative sentiment analysis
analysis_result = comparative_sentiment_analysis(company, articles_data)
# Generate a summary speech for the entire report
final_summary = f"{company}’s latest news coverage is mostly {analysis_result['Final Sentiment Analysis']}."
audio_file = text_to_speech(final_summary) # Generate TTS
# Construct final JSON output
output = {
"Company": company,
"Articles": articles_data,
"Comparative Sentiment Score": analysis_result,
"Audio": f"[Play {audio_file}]" # Include a playable reference
}
return output
if __name__ == "__main__":
company = input("Enter the company name for analysis: ").strip()
result = analyze_company_news(company)
print(json.dumps(result, indent=4, ensure_ascii=False)) |