import streamlit as st import json import time from utils.news_extraction import extract_news from utils.news_summarisation import summarize_text from utils.news_sentiment import analyze_sentiment from utils.topic_extraction import preprocess_text, train_lda, extract_topic_words from utils.comparative_analysis import comparative_sentiment_analysis from utils.text_to_speech import text_to_speech import os def analyze_company_news(company): st.write(f"Analyzing company: {company}") with st.spinner("Fetching news articles..."): articles = extract_news(company) if not articles: st.error("No news articles found. Try a different company.") return None st.write(f"Found {len(articles)} articles") articles_data = [] texts = [article["text"] for article in articles] with st.spinner("Performing sentiment analysis..."): sentiment_results = analyze_sentiment(texts) st.write(f"Sentiment analysis completed for {len(sentiment_results['Predicted Sentiment'])} articles") for article, sentiment in zip(articles, sentiment_results["Predicted Sentiment"]): summary = summarize_text(article["text"]) preprocessed_text = preprocess_text([article["text"]]) lda_model, dictionary = train_lda(preprocessed_text) topic_words = extract_topic_words(lda_model) articles_data.append({ "Title": article["title"], "Summary": summary, "Sentiment": sentiment, "Topics": topic_words }) with st.spinner("Performing comparative analysis..."): analysis_result = comparative_sentiment_analysis(company, articles_data) st.write("Comparative analysis completed") st.write("Analysis result:", analysis_result) final_summary = f"{company}’s latest news coverage is mostly {analysis_result['Final Sentiment Analysis']}." with st.spinner("Generating Hindi TTS summary..."): try: audio_file = text_to_speech(final_summary) if os.path.exists(audio_file): st.write(f"TTS summary generated: {audio_file}") else: st.error("Failed to generate TTS summary") audio_file = None except Exception as e: st.error(f"TTS generation failed: {str(e)}") audio_file = None return { "Company": company, "Articles": articles_data, "Comparative Sentiment Score": analysis_result, "Audio": audio_file } st.title("Company News Analysis") company = st.text_input("Enter the company name for analysis:") if st.button("Analyze") and company: st.write(f"Starting analysis for: {company}") result = analyze_company_news(company) if result: st.subheader(f"Analysis for {result['Company']}") for article in result["Articles"]: st.write(f"**Title:** {article['Title']}") st.write(f"**Summary:** {article['Summary']}") st.write(f"**Sentiment:** {article['Sentiment']}") st.write(f"**Topics:** {', '.join(article['Topics'])}") st.markdown("---") st.subheader("Comparative Sentiment Score") st.json(result["Comparative Sentiment Score"]) st.subheader("Hindi TTS Summary") if result["Audio"]: st.audio(result["Audio"], format="audio/mp3") else: st.warning("TTS summary not available")