Keshav-rejoice commited on
Commit
3eef55c
Β·
verified Β·
1 Parent(s): 58b78f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +823 -275
app.py CHANGED
@@ -6,43 +6,77 @@ import cv2
6
  from tensorflow.keras.models import load_model
7
  from keras.preprocessing.image import img_to_array
8
  from keras.applications.inception_v3 import preprocess_input
9
- import os
 
 
10
  from PIL import Image
11
  import io
12
  from datetime import datetime
13
  import pandas as pd
14
- st.set_page_config(page_title="Wall Defect Classifier", layout="centered")
15
- if "dpoc_list" not in st.session_state:
16
- st.session_state.dpoc_list = []
17
- # Set OpenAI API Key
18
- openai.api_key = os.getenv('OPEN_AI')
19
- def add_dpoc_entry(title, description):
20
- now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
21
- entry = {
22
- "id": len(st.session_state.dpoc_list) + 1,
23
- "dpoc_category_id": 1, # You can dynamically set this if needed
24
- "title": title,
25
- "description": description,
26
- "created_at": now,
27
- "updated_at": now,
28
- "deleted_at": ""
29
- }
30
- st.session_state.dpoc_list.append(entry)
31
- # Defect categories
32
  class_labels = [
33
- "Construction Joint",
34
- "Floor Cracks",
35
- "Floor Debonding",
36
- "Floor peeling",
37
- "Floor oil",
38
- "Flooring Bubble",
39
- "Pot holes",
40
- "Shade fading"
41
  ]
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  @st.cache_resource
44
  def load_trained_model():
45
- return load_model('my_inceptionmodelwithoutaug8a.h5')
 
 
 
 
46
 
47
  def compress_image(image_bytes, max_size_kb=500):
48
  img = Image.open(io.BytesIO(image_bytes))
@@ -57,283 +91,797 @@ def compress_image(image_bytes, max_size_kb=500):
57
  quality -= 5
58
  return output_bytes.getvalue()
59
 
60
- def process_image_for_openai(image_bytes):
61
- compressed_image = compress_image(image_bytes)
62
- return base64.b64encode(compressed_image).decode('utf-8')
63
-
64
- # Load model once
65
- loaded_model = load_trained_model()
66
-
67
- # App UI
68
-
69
-
 
 
 
 
 
 
 
70
 
71
- st.title("🧠 Wall Defect Classification & AI-Based Description")
72
- category_choice = st.selectbox("πŸ› οΈ Select Defect Category Type:", ["Painting","Flooring"], index=0)
73
- if category_choice == "Flooring":
74
- st.markdown("Upload a wall surface image to detect potential defects and generate a structured AI analysis.")
75
-
76
-
77
- uploaded_file = st.file_uploader("πŸ“€ Upload an Image", type=["jpg", "jpeg", "png"])
78
-
79
- if uploaded_file is not None:
80
- file_bytes = uploaded_file.getvalue()
81
-
82
- st.image(file_bytes, caption="πŸ–ΌοΈ Uploaded Image", use_column_width=True)
83
-
84
- # Preprocess for prediction
85
- input_img = cv2.imdecode(np.frombuffer(file_bytes, np.uint8), cv2.IMREAD_COLOR)
86
- input_img_resized = cv2.resize(input_img, (256, 256))
87
  x = img_to_array(input_img_resized)
88
  x = np.expand_dims(x, axis=0)
89
  x = preprocess_input(x)
90
-
91
- preds = loaded_model.predict(x)
92
- print(preds)
93
- class_index = np.argmax(preds[0])
94
- print(class_index)
95
- max_probability = preds[0][class_index]
96
- print(max_probability)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  class_name = class_labels[class_index]
98
- print(class_name)
99
-
100
- # Classification Result Display
101
- st.subheader("πŸ” Classification Result")
102
- st.success(f"**Predicted Defect:** {class_name}")
103
- st.progress(min(int(max_probability * 100), 100))
104
- st.markdown(f"**Confidence Level:** {max_probability:.2%}")
105
-
106
- if max_probability < 0.59:
107
- st.warning("⚠️ The confidence score is below 59%. Please manually verify this result.")
108
- else:
109
- compressed_base64 = process_image_for_openai(file_bytes)
110
- ai_content = """
111
- You are an expert in identifying and resolving wall and flooring defects. Use the dataset below to generate all applicable recommended solutions for any provided defect or combination of defects.
112
 
113
- Instructions:
114
- Accept a defect name as input.
115
-
116
- Search the dataset for matches and return all recommended solutions, grouped by Sub-Defect Type.
117
-
118
- If the defect appears under multiple subtypes, combine and list all applicable solutions.
119
-
120
- If the defect is not found in the dataset, use semantic analysis and your domain expertise to generate a logical and professional solution.
121
-
122
- Do not mention whether the defect is listed in the dataset or not β€” simply return the recommended solution.
123
-
124
- Use clear steps such as: surface preparation, grinding, priming, coating, sealing, repairing, joint treatment, or finishing, depending on the nature of the defect
125
-
126
-
127
-
128
-
129
- Dataset:
130
-
131
-
132
- Defect: Spike Roller Mark
133
- Sub-Defect Type: Epoxy
134
- Recommended Solution:
135
- 1. Surface preparation on existing resinious flooring by light grinding.
136
- 2. Application of Primer.
137
- 3. Application of thin film coating with Apcoflor TC 510
138
-
139
- Defect: Spike Roller Mark
140
- Sub-Defect Type: PU
141
- Recommended Solution:
142
- 1. Surface preparation on existing resinious flooring by light grinding.
143
- 2. Application of Primer.
144
- 3. Application of thin film coating with Apcoflor PUV
145
-
146
- Defect: Trowel Mark
147
- Sub-Defect Type: Epoxy
148
- Recommended Solution:
149
- 1. Surface preparation on existing resinious flooring by light grinding.
150
- 2. Application of Primer.
151
- 3. Application of epoxy topcoat with 1mm thickness using Apcoflor SL1TC
152
-
153
- Defect: Trowel Mark
154
- Sub-Defect Type: PU
155
- Recommended Solution:
156
- 1. Surface preparation on existing resinious flooring by light grinding
157
- 2. Groove cutting
158
- 3. Application of PU scratch coat
159
- 4. Application of Topcoat with 1 to 2 mm thickness
160
-
161
- Defect: Bubble Formation
162
- Sub-Defect Type: Epoxy
163
- Recommended Solution:
164
- 1. Surface preparation on existing resinious flooring by light grinding.
165
- 2. Application of Primer.
166
- 3. Application of thin film coating with Apcoflor TC 510
167
-
168
- Defect: Bubble Formation
169
- Sub-Defect Type: PU
170
- Recommended Solution:
171
- 1. Surface preparation on existing resinious flooring by light grinding
172
- 2. Groove cutting
173
- 3. Application of PU scratch coat
174
- 4. Application of Topcoat with 1 to 5 mm thickness
175
-
176
- Defect: Peel off/Debonding
177
- Sub-Defect Type: Epoxy
178
- Recommended Solution:
179
- 1. Surface preparation on existing resinious flooring by light grinding
180
- 2. Removing all loose resinious flooring
181
- 3. Application of Primer
182
- 4. Application of thin film coating with Apcoflor TC 510/Apcoflor SL1TC
183
 
184
- Defect: Peel off/Debonding
185
- Sub-Defect Type: PU
186
- Recommended Solution:
187
- 1. Surface preparation on existing resinious flooring by light grinding
188
- 2. Groove cutting
189
- 3. Application of PU scratch coat
190
- 4. Application of Topcoat with 1 to 5 mm thickness
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
- Defect: Shade Variation
193
- Sub-Defect Type: Epoxy
194
- Recommended Solution:
195
- 1. Surface preparation on existing resinious flooring by light grinding
196
- 2. Application of Primer
197
- 3. Application of thin film coating with Apcoflor TC 510/Apcoflor SL1 TC
198
 
199
- Defect: Shade Variation
200
- Sub-Defect Type: PU
201
- Recommended Solution:
202
- 1. Surface preparation on existing resinious flooring by light grinding
203
- 2. Application of Primer
204
- 3. Application of thin film coating with Apcoflor PUV
 
 
205
 
206
- Defect: Cracks on Floors
207
- Sub-Defect Type: Epoxy and PU
208
- Recommended Solution:
209
- 1. Surface preparation - opening the cracks in "V" groove
210
- 2. Application of Primer
211
- 3. Application of epoxy putty using Apcoflor LSC3 XL
212
 
213
- Defect: Expansion Joint
214
- Sub-Defect Type: Cracking & Spalling of Joint Edge
215
- Recommended Solution:
216
- 1. Crack Treatment - Open cracks in "V" groove
217
- - Apply Epoxy Primer
218
- - Apply epoxy putty using Apcoflor LSC3 XL
219
- 2. Joint Edge Treatment
220
- - Remove loose concrete
221
- - Apply Epoxy mortar using Apcoflor HFP 120 + special sand at 1:3.5 mix ratio
222
- - Apply at damaged joint edges
223
 
224
- Defect: Expansion Joint
225
- Sub-Defect Type: Sealant Failure
226
- Recommended Solution:
227
- 1. Apply PU-based backer rod
228
- 2. Apply PU/Polysulphide Sealant over the backer rod up to the top of the joint edges
229
- 3. Provide protection using self-adhesive tapes or aluminum stripping
230
-
231
- Defect: Construction Joint
232
- Sub-Defect Type: -
233
- Recommended Solution:
234
- 1. Remove dust/impurities from joints
235
- 2. Apply Primer
236
- 3. Apply Epoxy SL Screed or PU Screed
237
-
238
- Defect: Wall & Floor Junction Coving
239
- Sub-Defect Type: -
240
- Recommended Solution:
241
- 1. Surface preparation
242
- 2. Apply Epoxy Primer or scratch coat
243
- 3. Apply Epoxy mortar using Apcoflor HFP 120 + special graded sand at 1:3 mixing ratio
244
-
245
- Defect: Flooring - POT Holes
246
- Sub-Defect Type: -
247
- Recommended Solution:
248
- 1. Surface preparation - Cut the pothole in square/rectangle shape, remove dust/oil
249
- 2. Apply Epoxy Primer
250
- 3. Apply Apcoflor HFP 120 + special graded sand at 1:3 mix ratio
251
- 4. Finish/level the surface
252
-
253
- Fallback Logic for Unknown Defects:
254
- Use these patterns to infer the solution without stating the defect is not listed.
255
-
256
- Structural Defect:
257
-
258
- Cut/clean damaged area
259
-
260
- Surface preparation (light grinding or cutting)
261
-
262
- Apply epoxy/PU primer
263
-
264
- Apply screed or mortar (e.g., Apcoflor HFP 120 + sand)
265
 
266
- Finish and level as needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
 
268
- Aesthetic Defect (e.g., fading, discoloration):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
 
270
- Surface preparation by light grinding
271
 
272
- Application of appropriate primer
273
 
274
- Application of thin film coating (Epoxy: Apcoflor TC 510, PU: Apcoflor PUV, Hybrid as needed)
 
 
 
275
 
276
- Final finish for uniform appearance
277
 
278
- Cracks & Breaks:
279
 
280
- Open in "V" groove
 
 
281
 
282
- Apply primer
283
 
284
- Fill with epoxy putty (e.g., Apcoflor LSC3 XL)
285
 
286
- Joint Issues:
287
 
288
- Remove loose particles
 
 
289
 
290
- Apply epoxy primer
291
 
292
- Joint treatment with sealants or epoxy mortars
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293
 
294
- Protect with tape or metal strip if needed
 
295
 
 
 
296
 
297
- """
 
 
298
 
299
- ai_prompt = (
300
- f"Our trained model predicts the following defect: {class_name}. "
301
-
302
- f"for this defect? The output format should be:\n"
303
- f"Category ID: <Insert Category ID>\n"
304
- f"Title: <Short Title of the Defect>\n"
305
- f"Description: <A concise, technical description in 100 words or less>"
306
- )
307
 
308
- with st.spinner("πŸ“ Generating AI description..."):
309
- try:
310
- response = openai.ChatCompletion.create(
311
- model="gpt-4o",
312
- messages=[
313
- {
314
- "role": "system",
315
- "content": ai_content
316
- },
317
- {
318
- "role":"user",
319
- "content":f"Generate recommended solutions for this defect '{class_name}'"
320
- }
321
- ],
322
- max_tokens=600,
323
- )
324
- ai_description = response.choices[0].message.content
325
- st.subheader("πŸ“ AI-Generated Defect Description")
326
- st.text_area("Output", value=ai_description.strip(), height=250)
327
- except Exception as e:
328
- st.error(f"❌ An error occurred while generating the description:\n{e}")
329
- add_dpoc_entry(class_name, ai_description.strip())
330
- st.subheader("πŸ“‹ DPOC")
331
- if st.session_state.dpoc_list:
332
- dpoc_df = pd.DataFrame(st.session_state.dpoc_list)
333
- st.dataframe(dpoc_df, use_container_width=True)
334
- st.download_button("πŸ“₯ Download CSV", dpoc_df.to_csv(index=False), "dpoc_log.csv", "text/csv")
335
- else:
336
- st.info("No entries yet. Upload an image to start.")
337
 
338
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  from tensorflow.keras.models import load_model
7
  from keras.preprocessing.image import img_to_array
8
  from keras.applications.inception_v3 import preprocess_input
9
+ import requests
10
+ import json_repair
11
+ import json
12
  from PIL import Image
13
  import io
14
  from datetime import datetime
15
  import pandas as pd
16
+ import re
17
+ from json_repair import repair_json
18
+ from dotenv import load_dotenv
19
+ import os
20
+
21
+ # Load environment variables
22
+ load_dotenv()
23
+
24
+ # Class labels for defect prediction
 
 
 
 
 
 
 
 
 
25
  class_labels = [
26
+ "algae",
27
+ "bubbles",
28
+ "Cracks",
29
+ "Fungus",
30
+ "peeling",
31
+
 
 
32
  ]
33
 
34
+ # Set OpenAI API key
35
+ openai.api_key = os.getenv("OPENAI_API_KEY")
36
+
37
+ # Page configuration
38
+ st.set_page_config(
39
+ page_title="Painting Defect Detection System",
40
+ page_icon="πŸ”",
41
+ layout="wide",
42
+ initial_sidebar_state="expanded"
43
+ )
44
+
45
+ # Custom CSS for better styling
46
+ st.markdown("""
47
+ <style>
48
+ .main {
49
+ padding-top: 2rem;
50
+ }
51
+ .stAlert {
52
+ margin-top: 1rem;
53
+ }
54
+ .defect-card {
55
+ border: 1px solid #ddd;
56
+ border-radius: 8px;
57
+ padding: 1rem;
58
+ margin: 1rem 0;
59
+ background-color: #f9f9f9;
60
+ }
61
+ .metric-card {
62
+ background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
63
+ padding: 1rem;
64
+ border-radius: 8px;
65
+ color: white;
66
+ text-align: center;
67
+ margin: 0.5rem 0;
68
+ }
69
+ </style>
70
+ """, unsafe_allow_html=True)
71
+
72
+ # Cache the model loading to improve performance
73
  @st.cache_resource
74
  def load_trained_model():
75
+ try:
76
+ return load_model('painting.keras')
77
+ except Exception as e:
78
+ st.error(f"Error loading model: {str(e)}")
79
+ return None
80
 
81
  def compress_image(image_bytes, max_size_kb=500):
82
  img = Image.open(io.BytesIO(image_bytes))
 
91
  quality -= 5
92
  return output_bytes.getvalue()
93
 
94
+ def get_direct_drive_url(share_url):
95
+ if "drive.google.com/file/d/" in share_url:
96
+ file_id = share_url.split("/file/d/")[1].split("/")[0]
97
+ return f"https://drive.google.com/uc?export=download&id={file_id}"
98
+ return share_url
99
+
100
+ def process_image(url):
101
+ try:
102
+ file_id = re.search(r'/d/(.*?)/', url)
103
+ if file_id: # Google Drive share link
104
+ url = f'https://drive.google.com/uc?export=download&id={file_id.group(1)}'
105
+
106
+ resp = requests.get(url, timeout=15)
107
+ resp.raise_for_status()
108
+
109
+ if 'image' not in resp.headers.get('Content-Type', ''):
110
+ raise ValueError('URL does not point to an image')
111
 
112
+ img = cv2.imdecode(np.frombuffer(resp.content, np.uint8), cv2.IMREAD_COLOR)
113
+ input_img_resized = cv2.resize(img, (256, 256))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  x = img_to_array(input_img_resized)
115
  x = np.expand_dims(x, axis=0)
116
  x = preprocess_input(x)
117
+ return x, resp.content
118
+ except Exception as e:
119
+ st.error(f"Error processing image from URL: {e}")
120
+ return None, None
121
+
122
+ def process_uploaded_image(uploaded_file):
123
+ try:
124
+ image_bytes = uploaded_file.read()
125
+ img = Image.open(io.BytesIO(image_bytes))
126
+ img_array = np.array(img)
127
+
128
+ # Convert RGB to BGR for OpenCV
129
+ if len(img_array.shape) == 3:
130
+ img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
131
+
132
+ input_img_resized = cv2.resize(img_array, (256, 256))
133
+ x = img_to_array(input_img_resized)
134
+ x = np.expand_dims(x, axis=0)
135
+ x = preprocess_input(x)
136
+
137
+ return x, image_bytes
138
+ except Exception as e:
139
+ st.error(f"Error processing uploaded image: {e}")
140
+ return None, None
141
+
142
+ def predict_defect(processed_image, model):
143
+ try:
144
+ preds = model.predict(processed_image)[0]
145
+ class_index = int(np.argmax(preds))
146
+ confidence = float(preds[class_index])
147
  class_name = class_labels[class_index]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
 
149
+ return {
150
+ "type": class_name,
151
+ "severity": confidence
152
+ }, class_index
153
+ except Exception as e:
154
+ return {"error": str(e)}, []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
+ def compress_image_to_base64(image_bytes, max_size_kb=500):
157
+ img = Image.open(io.BytesIO(image_bytes)).convert("RGB")
158
+ output_bytes = io.BytesIO()
159
+ quality = 95
160
+ while True:
161
+ output_bytes.seek(0)
162
+ output_bytes.truncate()
163
+ img.save(output_bytes, format='JPEG', quality=quality)
164
+ if len(output_bytes.getvalue()) <= max_size_kb * 1024 or quality <= 5:
165
+ break
166
+ quality -= 5
167
+ return base64.b64encode(output_bytes.getvalue()).decode('utf-8')
168
+
169
+ def generate_openai_description(classification, image_bytes):
170
+ try:
171
+ if isinstance(classification, dict) and 'type' in classification:
172
+ defect_type = classification['type']
173
+ elif isinstance(classification, dict) and 'error' in classification:
174
+ defect_type = "Unknown defect"
175
+ else:
176
+ defect_type = str(classification)
177
+
178
+ # Compress and encode image to base64
179
+ compressed_base64 = compress_image_to_base64(image_bytes)
180
+ ai_prompt = (
181
+ f"You are an expert painting inspector analyzing surface defects."
182
+ f"DETECTED DEFECTS: {defect_type}"
183
+ f"TASK: Examine the painted surface image and provide a technical description of the visible defects."
184
+ f"REQUIREMENTS:"
185
+ f"- Write 200 characters describing what you observe"
186
+ f"- Focus on visible paint failures, surface irregularities, or coating issues"
187
+ f"- Use professional painting and coating terminology"
188
+ f"- Be specific about location, extent, and characteristics of defects"
189
+ f"- If multiple defects are present, describe each one"
190
+ f"- Maintain an objective, technical tone"
191
+ f"Dont use \\n"
192
+ f"IMPORTANT: Always provide a description based on what you can see in the image. "
193
+ f"Even if the detected defect types seem unclear, describe the actual visible conditions "
194
+ f"in the painted surface. Only respond with 'Unable to generate description due to "
195
+ f"image quality issues' if the image is genuinely too blurry, dark, or corrupted to analyze."
196
+ f"Begin your description now:")
197
+
198
+
199
+
200
+ # Call OpenAI with image and text
201
+ response = openai.chat.completions.create(
202
+ model="gpt-4o",
203
+ messages=[
204
+ {
205
+ "role": "user",
206
+ "content": [
207
+ {"type": "text", "text": ai_prompt},
208
+ {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{compressed_base64}"}}
209
+ ]
210
+ }
211
+ ]
212
+ )
213
+
214
+ result_text = response.choices[0].message.content.strip()
215
+ return result_text
216
+
217
+ except Exception as e:
218
+ return f"Error generating description: {str(e)}"
219
 
 
 
 
 
 
 
220
 
221
+
222
+
223
+ def get_sps(defect_type, flooring_type,defect_category="flooring"):
224
+ ai_content = """ You are an expert in identifying and resolving painting and wall surface defects.
225
+ Your task is to accept a defect name and surface type as input and return applicable solutions using the structured dataset below.
226
+ IMPORTANT: You MUST respond with valid JSON only. Do not include any explanatory text before or after the JSON.
227
+ Instructions:
228
+ Return TWO separate categories of solutions:
229
 
230
+ MANDATORY SPS: Solutions specifically matching the input defect
231
+ OPTIONAL SPS: Solutions from 'All Defects' records (universal solutions)
 
 
 
 
232
 
233
+ For MANDATORY SPS:
 
 
 
 
 
 
 
 
 
234
 
235
+ Match the input defect against the 'Defects' column using:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
 
237
+ Exact match
238
+ Partial match (e.g. 'Cracks' matches all 'Cracks' records)
239
+
240
+
241
+ EXCLUDE any 'All Defects' records from this section
242
+ Only return records where the 'Category' matches the specified surface type (NonWaterproofing or Waterproofing)
243
+
244
+ For OPTIONAL SPS:
245
+
246
+ ONLY include records where 'Defects' is 'All Defects', 'ALL Defects', or 'All Defect'
247
+ Filter by surface type:
248
+
249
+ If surface_type is "NonWaterproofing": Return records with Category="NonWaterproofing"
250
+ If surface_type is "Waterproofing": Return records with Category="Waterproofing"
251
+
252
+
253
+ Return only those matching the specified surface type
254
+
255
+ For each valid record in both categories:
256
+
257
+ Use the id from the dataset. If not available, generate a unique numeric ID.
258
+ Use the title from the dataset. If not available, use appropriate fallback title based on surface type
259
+ Use the description from the dataset exactly (verbatim). If not found, generate fallback content based on best practices.
260
+ CRITICAL FOR PRODUCT EXTRACTION:
261
+
262
+ Carefully analyze the description content for ANY product names, brand names, or material references
263
+ Extract ALL product names mentioned in the description, including:
264
+
265
+ Brand names (e.g., "Asian Paints SmartCare Crack Seal")
266
+ Generic product names (e.g., "Economy Primer", "Ace Suprema")
267
+ Material names (e.g., "white cement", "fine sand")
268
+ Tool names (e.g., "Putty Knife", "Paint Scraper")
269
+ Chemical names (e.g., "oxygen bleach", "chlorinated bleach")
270
+
271
+
272
+ List them in products array, assigning a unique ID per product
273
+ NEVER leave products array empty - if no specific products are mentioned, include generic alternatives like "Primer", "Paint", "Cleaning Solution", etc.
274
+
275
+
276
+ Include all records where Category matches the filtering condition
277
+ IMPORTANT: Remove all HTML tags from the description content. Convert HTML lists to plain text format.
278
+
279
+ Product Extraction Examples:
280
+
281
+ "Use Asian Paints SmartCare Crack Seal" β†’ Extract: "Asian Paints SmartCare Crack Seal"
282
+ "Economy Primer, Ace Suprema" β†’ Extract: "Economy Primer", "Ace Suprema"
283
+ "Use boiling water, pressure washers, oxygen bleach" β†’ Extract: "Pressure Washer", "Oxygen Bleach"
284
+ "Sand with medium-grit sandpaper" β†’ Extract: "Medium-grit Sandpaper"
285
+
286
+
287
+
288
+ If no matching dataset entry is found for MANDATORY SPS, return one fallback solution following industry-standard practices for the specified surface type (without stating it is a fallback).
289
+ Each solution must follow standard practices such as:
290
+
291
+ Surface preparation
292
+ Cleaning and washing
293
+ Priming
294
+ Crack filling
295
+ Sanding
296
+ Paint application
297
+ Sealing
298
+ Moisture treatment
299
+ Finishing
300
+ Each solution must follow standard practices such as:
301
+ - Surface preparation
302
+ - Cleaning and washing
303
+ - Priming
304
+ - Crack filling
305
+ - Sanding
306
+ - Paint application
307
+ - Sealing
308
+ - Moisture treatment
309
+ - Finishing
310
+
311
+ Return ONLY this JSON format (no other text):
312
+
313
+ {
314
+ "mandatory_sps": [
315
+ {
316
+ "id": 181,
317
+ "title": "Surface Preparation for Cracks - NonWaterproofing",
318
+ "content": "New masonry surfaces must be allowed to cure completely. It is recommended to allow 28 days as the curing time for new masonry surfaces. Opening the cracks with the help of a grinder/cutter and cleaning the surface with pressure washers for further treatment. FILLING FOR CRACKS For filling cracks up to 3mm, use Asian Paints SmartCare Crack Seal. For filling cracks more than 3mm, use Asian Paints SmartCare Textured Crack Filler. FILLING FOR HOLES & DENTS In case of dents and holes, use TruCare Wall Putty Suprema or a mix of white cement and fine sand in the ratio 1:3.",
319
+ "products": [
320
+ {
321
+ "id": 1,
322
+ "product_name": "Asian Paints SmartCare Crack Seal"
323
+ },
324
+ {
325
+ "id": 2,
326
+ "product_name": "Asian Paints SmartCare Textured Crack Filler"
327
+ },
328
+ {
329
+ "id": 3,
330
+ "product_name": "TruCare Wall Putty Suprema"
331
+ }
332
+ ]
333
+ }
334
+ ],
335
+ "optional_sps": [
336
+ {
337
+ "id": 211,
338
+ "title": "4 Year Paint Warranty System - NonWaterproofing",
339
+ "content": "Economy Primer, Ace Suprema",
340
+ "products": [
341
+ {
342
+ "id": 4,
343
+ "product_name": "Economy Primer"
344
+ },
345
+ {
346
+ "id": 5,
347
+ "product_name": "Ace Suprema"
348
+ }
349
+ ]
350
+ }
351
+ ]
352
+ }
353
 
354
+ Dataset:
355
+
356
+ id: 181
357
+ Defects: Cracks
358
+ Category: NonWaterproofing
359
+ title: Surface Preparation for Cracks - NonWaterproofing
360
+ description: New masonry surfaces must be allowed to cure completely. It is recommended to allow 28 days as the curing time for new masonry surfaces. Opening the cracks with the help of a grinder/cutter and cleaning the surface with pressure washers for further treatment.
361
+
362
+ FILLING FOR CRACKS
363
+ For filling cracks up to 3mm, use Asian Paints SmartCare Crack Seal.
364
+ For filling cracks more than 3mm, use Asian Paints SmartCare Textured Crack Filler.
365
+
366
+ FILLING FOR HOLES & DENTS
367
+ In case of dents and holes, use TruCare Wall Putty Suprema or a mix of white cement and fine sand in the ratio 1:3.
368
+
369
+ id: 182
370
+ Defects: Cracks
371
+ Category: Waterproofing
372
+ title: Surface Preparation for Cracks - Waterproofing
373
+ description: New masonry surfaces must be allowed to cure completely. It is recommended to allow 28 days as the curing time for new masonry surfaces. Opening the cracks with the help of a grinder/cutter and cleaning the surface with pressure washers for further treatment.
374
+
375
+ FILLING FOR CRACKS
376
+ For filling cracks up to 3mm, use Asian Paints SmartCare Crack Seal.
377
+ For filling cracks more than 3mm, use Asian Paints SmartCare Textured Crack Filler.
378
+
379
+ FILLING FOR HOLES & DENTS
380
+ In case of dents and holes, use TruCare Wall Putty Suprema or a mix of white cement and fine sand in the ratio 1:3.
381
+
382
+ id: 183
383
+ Defects: Patchiness
384
+ Category: NonWaterproofing
385
+ title: Surface Preparation for Patchiness - NonWaterproofing
386
+ description: Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
387
+
388
+ id: 184
389
+ Defects: Patchiness
390
+ Category: Waterproofing
391
+ title: Surface Preparation for Patchiness - Waterproofing
392
+ description: Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
393
+
394
+ id: 185
395
+ Defects: Peeling
396
+ Category: NonWaterproofing
397
+ title: Surface Preparation for Peeling - NonWaterproofing
398
+ description: Use Putty Knife or Paint Scraper for removing loose and peeling paint without damaging the underlying surface.Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface for further treatment
399
+ Surface should be free from any loose paint, dust or grease.Growths of fungus, algae or moss should be removed by wire brushing and water.
400
+
401
+ id: 186
402
+ Defects: Peeling
403
+ Category: Waterproofing
404
+ title: Surface Preparation for Peeling - Waterproofing
405
+ description: Use Putty Knife or Paint Scraper for removing loose and peeling paint without damaging the underlying surface.Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface for further treatment
406
+ Surface should be free from any loose paint, dust or grease.Growths of fungus, algae or moss should be removed by wire brushing and water.
407
+
408
+ id: 187
409
+ Defects: Algae
410
+ Category: NonWaterproofing
411
+ title: Surface Preparation for Algae - NonWaterproofing
412
+ description: Use boiling water, pressure washers, oxygen bleach, chlorinated bleach, and commercial algae removers to get rid of green algae on concrete. Pressure wash and scrape the wall with a soft brush
413
+
414
+ id: 188
415
+ Defects: Algae
416
+ Category: Waterproofing
417
+ title: Surface Preparation for Algae - Waterproofing
418
+ description: Use boiling water, pressure washers, oxygen bleach, chlorinated bleach, and commercial algae removers to get rid of green algae on concrete. Pressure wash and scrape the wall with a soft brush
419
+
420
+ id: 189
421
+ Defects: Bubble
422
+ Category: NonWaterproofing
423
+ title: Surface Preparation for Bubble - NonWaterproofing
424
+ description: If moisture is the issue, fix any leaks or dampness before proceeding. Moisture must be fully resolved to prevent new bubbling. Remove the buubled paint by using the scraper to peel off the loose and raised areas.Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
425
+
426
+ id: 190
427
+ Defects: Bubble
428
+ Category: Waterproofing
429
+ title: Surface Preparation for Bubble - Waterproofing
430
+ description: If moisture is the issue, fix any leaks or dampness before proceeding. Moisture must be fully resolved to prevent new bubbling. Remove the buubled paint by using the scraper to peel off the loose and raised areas.Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
431
+
432
+ id: 191
433
+ Defects: Blisters
434
+ Category: NonWaterproofing
435
+ title: Surface Preparation for Blisters - NonWaterproofing
436
+ description: Remove blisters by scraping, sanding or pressure-washing down to underlying coats of paint or primer.Repair loose caulking and improve ventilation of the building to prevent a recurring problem
437
+
438
+ id: 192
439
+ Defects: Blisters
440
+ Category: Waterproofing
441
+ title: Surface Preparation for Blisters - Waterproofing
442
+ description: Remove blisters by scraping, sanding or pressure-washing down to underlying coats of paint or primer.Repair loose caulking and improve ventilation of the building to prevent a recurring problem
443
+
444
+ id: 193
445
+ Defects: Efflorescense
446
+ Category: NonWaterproofing
447
+ title: Surface Preparation for Efflorescense - NonWaterproofing
448
+ description: Stiff brushes are used to sweep away efflorescence from smoother surfaces.Apply a forceful water rinse to efflorescence with a pressure washer to clean it up
449
+
450
+ id: 194
451
+ Defects: Efflorescense
452
+ Category: Waterproofing
453
+ title: Surface Preparation for Efflorescense - Waterproofing
454
+ description: Stiff brushes are used to sweep away efflorescence from smoother surfaces.Apply a forceful water rinse to efflorescence with a pressure washer to clean it up
455
+
456
+ id: 195
457
+ Defects: Fungus
458
+ Category: NonWaterproofing
459
+ title: Surface Preparation for Fungus - NonWaterproofing
460
+ description: Use boiling water, pressure washers, oxygen bleach, chlorinated bleach, and commercial fungus removers to get rid of fungus on concrete. Pressure wash and scrape the wall with a soft brush
461
+
462
+ id: 196
463
+ Defects: Fungus
464
+ Category: Waterproofing
465
+ title: Surface Preparation for Fungus - Waterproofing
466
+ description: Use boiling water, pressure washers, oxygen bleach, chlorinated bleach, and commercial fungus removers to get rid of fungus on concrete. Pressure wash and scrape the wall with a soft brush
467
+
468
+ id: 197
469
+ Defects: Poor Hiding
470
+ Category: NonWaterproofing
471
+ title: Surface Preparation for Poor Hiding - NonWaterproofing
472
+ description: Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
473
+
474
+ id: 198
475
+ Defects: Poor Hiding
476
+ Category: Waterproofing
477
+ title: Surface Preparation for Poor Hiding - Waterproofing
478
+ description: Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
479
+
480
+ id: 199
481
+ Defects: Shade variation
482
+ Category: NonWaterproofing
483
+ title: Surface Preparation for Shade variation - NonWaterproofing
484
+ description: Remove Loose Material: Carefully strip away loose or blistered paint to expose a firm surface.Spot Priming: Apply an appropriate primer to the affected area, ensuring adhesion.
485
+
486
+ id: 200
487
+ Defects: Shade variation
488
+ Category: Waterproofing
489
+ title: Surface Preparation for Shade variation - Waterproofing
490
+ description: Remove Loose Material: Carefully strip away loose or blistered paint to expose a firm surface.Spot Priming: Apply an appropriate primer to the affected area, ensuring adhesion.
491
+
492
+ id: 211
493
+ Defects: All Defects
494
+ Category: NonWaterproofing
495
+ title: 4 Year Paint Warranty System - NonWaterproofing
496
+ description: Economy Primer, Ace Suprema
497
+
498
+ id: 212
499
+ Defects: All Defects
500
+ Category: NonWaterproofing
501
+ title: 7 year Paint Warranty System - NonWaterproofing
502
+ description: Economy Primer, Apex Suprema
503
+
504
+ id: 213
505
+ Defects: All Defects
506
+ Category: NonWaterproofing
507
+ title: 8 year Paint Warranty System - NonWaterproofing
508
+ description: Exterior Primer, Ultima Strech Suprema
509
+
510
+ id: 214
511
+ Defects: All Defects
512
+ Category: NonWaterproofing
513
+ title: 9 year Paint Warranty System - NonWaterproofing
514
+ description: Exterior Primer, Ultima Suprema
515
+
516
+ id: 215
517
+ Defects: All Defects
518
+ Category: NonWaterproofing
519
+ title: 12 year Paint Warranty System - NonWaterproofing
520
+ description: Exterior Primer, Protek Topcoat
521
+
522
+ id: 216
523
+ Defects: All Defects
524
+ Category: NonWaterproofing
525
+ title: 15 year Paint Warranty System - NonWaterproofing
526
+ description: Exterior Primer, Duralife Topcoat
527
+
528
+ id: 217
529
+ Defects: All Defects
530
+ Category: Waterproofing
531
+ title: 4 year Complete Paint Warranty System - Waterproofing
532
+ description: Damp Sheath suprema, Ace Suprema
533
+
534
+ id: 218
535
+ Defects: All Defects
536
+ Category: Waterproofing
537
+ title: 6 year Complete Paint Warranty System - Waterproofing
538
+ description: Damp Proof Suprema, Apex Suprema
539
+
540
+ id: 219
541
+ Defects: All Defects
542
+ Category: Waterproofing
543
+ title: 8 year Complete Paint Warranty System - Waterproofing
544
+ description: Damp Proof Suprema, Ultima Strech Suprema
545
+
546
+ id: 220
547
+ Defects: All Defects
548
+ Category: Waterproofing
549
+ title: 10 year Complete Paint Warranty System - Waterproofing
550
+ description: Damp Prime Xtreme, Ultima Stretch Suprema
551
+
552
+ id: 221
553
+ Defects: All Defects
554
+ Category: Waterproofing
555
+ title: 12 year Complete Paint Warranty System - Waterproofing
556
+ description: Protek Basecoat, Protek Topcoat
557
+
558
+ id: 222
559
+ Defects: All Defects
560
+ Category: Waterproofing
561
+ title: 15 year Complete Paint Warranty System - Waterproofing
562
+ description: Duralife Basecoat, Duralife Topcoat
563
+
564
+ """
565
+
566
+
567
+
568
 
 
569
 
 
570
 
571
+ def remove_html_tags(text):
572
+ """Remove HTML tags and convert lists to plain text format"""
573
+ if not text:
574
+ return text
575
 
576
+ text = re.sub(r'<li>(.*?)</li>', r'β€’ \1', text, flags=re.IGNORECASE | re.DOTALL)
577
 
578
+ text = re.sub(r'<[^>]+>', '', text)
579
 
580
+ text = re.sub(r'\s+', ' ', text).strip()
581
+
582
+ text = text.replace('\n', ' ').replace('\r', '')
583
 
584
+ return text
585
 
 
586
 
 
587
 
588
+ try:
589
+
590
+
591
 
 
592
 
593
+ response = openai.chat.completions.create(
594
+ model="gpt-4o",
595
+ messages=[
596
+ {
597
+ "role": "system",
598
+ "content": ai_content
599
+ },
600
+ {
601
+ "role": "user",
602
+ "content": f"Generate recommended solutions for defect '{defect_type}' with painting type '{flooring_type}'. Return valid JSON only with both mandatory SPS and optional SPS that match the '{type}' . Remove HTML tags from content."
603
+ }
604
+ ],
605
+ max_tokens=2000, # Increased token limit
606
+ temperature=0.1, # Lower temperature for more consistent responses
607
+ )
608
+
609
+
610
+ ai_description = response.choices[0].message.content.strip()
611
+
612
+ ai_description = ai_description.replace('\n', ' ').replace('\r', '')
613
+
614
+ clean_response = ai_description
615
+ if clean_response.startswith('```json'):
616
+ clean_response = clean_response[7:]
617
+ elif clean_response.startswith('```'):
618
+ clean_response = clean_response[3:]
619
+ if clean_response.endswith('```'):
620
+ clean_response = clean_response[:-3]
621
+ clean_response = clean_response.strip()
622
+
623
+ try:
624
+ import json
625
+ response_data = json.loads(clean_response)
626
+
627
+ mandatory_sps = []
628
+ if 'mandatory_sps' in response_data and isinstance(response_data['mandatory_sps'], list):
629
+ for item in response_data['mandatory_sps']:
630
+ if isinstance(item, dict) and 'content' in item:
631
+ item['content'] = remove_html_tags(item['content'])
632
+ mandatory_sps.append(item)
633
+
634
+ optional_sps = []
635
+ if 'optional_sps' in response_data and isinstance(response_data['optional_sps'], list):
636
+ for item in response_data['optional_sps']:
637
+ if isinstance(item, dict) and 'content' in item:
638
+ item['content'] = remove_html_tags(item['content'])
639
+ optional_sps.append(item)
640
+
641
+ if not mandatory_sps and not optional_sps:
642
+ print("AI returned empty response")
643
+ # return create_fallback_response(defect_type, flooring_type)
644
+
645
+ return mandatory_sps, optional_sps
646
+
647
+ except json.JSONDecodeError as json_error:
648
+
649
+
650
+ try:
651
+ json_start = clean_response.find('{')
652
+ json_end = clean_response.rfind('}')
653
+
654
+ if json_start != -1 and json_end != -1 and json_end > json_start:
655
+ potential_json = clean_response[json_start:json_end+1]
656
+
657
+ potential_json = potential_json.replace("'", '"') # Replace single quotes
658
+ potential_json = re.sub(r',\s*}', '}', potential_json) # Remove trailing commas
659
+ potential_json = re.sub(r',\s*]', ']', potential_json) # Remove trailing commas in arrays
660
+
661
+ response_data = json.loads(potential_json)
662
+
663
+ mandatory_sps = []
664
+ if 'mandatory_sps' in response_data and isinstance(response_data['mandatory_sps'], list):
665
+ for item in response_data['mandatory_sps']:
666
+ if isinstance(item, dict) and 'content' in item:
667
+ item['content'] = remove_html_tags(item['content'])
668
+ mandatory_sps.append(item)
669
+
670
+ optional_sps = []
671
+ if 'optional_sps' in response_data and isinstance(response_data['optional_sps'], list):
672
+ for item in response_data['optional_sps']:
673
+ if isinstance(item, dict) and 'content' in item:
674
+ item['content'] = remove_html_tags(item['content'])
675
+ optional_sps.append(item)
676
+
677
+ return mandatory_sps, optional_sps
678
+
679
+ except Exception as recovery_error:
680
+ print(f"JSON recovery failed: {recovery_error}")
681
+
682
+ print("Using fallback response due to JSON parsing failure")
683
+
684
+ except Exception as e:
685
+ print(f"Error in OpenAI API call: {str(e)}")
686
+
687
+
688
+ def main():
689
+ st.title("πŸ” Painting Defect Detection System")
690
+ st.markdown("---")
691
+
692
+ # Load the model
693
+ model = load_trained_model()
694
+ if model is None:
695
+ st.error("Failed to load the defect detection model. Please check if the model file exists.")
696
+ return
697
+
698
+ # Sidebar for input options
699
+ st.sidebar.header("πŸ“‹ Input Configuration")
700
+
701
+ # Report details
702
+ st.sidebar.subheader("Report Details")
703
+ report_submission_id = st.sidebar.text_input("Report Submission Id", value=1)
704
+ report_section_page_id = st.sidebar.text_input("Page ID", value=7)
705
+ report_section_id = st.sidebar.text_input("Section ID", value=10)
706
+ defect_type = st.sidebar.text_input("Defect Type", value="painting")
707
+ type = st.sidebar.text_input("Type", value="NonWaterproofing")
708
 
709
+ # Input method selection
710
+ input_method = "Image URLs"
711
 
712
+ # Main content area
713
+ col1, col2 = st.columns([2, 1])
714
 
715
+ with col1:
716
+ st.header("πŸ“Έ Image Input")
717
+ st.subheader("Enter Image URLs")
718
 
 
 
 
 
 
 
 
 
719
 
720
+ image_data_list = []
721
+ classifications = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
722
 
723
+
724
+
725
+
726
+ num_urls = st.number_input("Number of images", min_value=1, max_value=10, value=1)
727
+
728
+ urls = []
729
+ for i in range(num_urls):
730
+ url = st.text_input(f"Image URL {i+1}", key=f"url_{i}")
731
+ if url:
732
+ urls.append(url)
733
+
734
+ if st.button("Process URLs", type="primary"):
735
+ for i, url in enumerate(urls):
736
+ if url.strip():
737
+ st.subheader(f"Image {i+1}")
738
+
739
+ with st.spinner(f"Processing image {i+1}..."):
740
+ processed_img, image_bytes = process_image(url)
741
+
742
+ if processed_img is not None and image_bytes is not None:
743
+ # Display the image
744
+ image = Image.open(io.BytesIO(image_bytes))
745
+ st.image(image, caption=f"Image {i+1}", width=300)
746
+
747
+ classification, dpoc = predict_defect(processed_img, model)
748
+ classifications.append(classification['type'] if 'type' in classification else 'Unknown')
749
+
750
+ # Generate OpenAI description
751
+ openai_desc = generate_openai_description(classification, image_bytes)
752
+
753
+ image_data_list.append({
754
+ "url": url,
755
+ "defect_classification": classification,
756
+ "individual_dopc": dpoc,
757
+ "tags": [classification['type']] if 'type' in classification else ["Unknown"],
758
+ "openai_desc": openai_desc,
759
+ })
760
+
761
+ # Display results
762
+ if 'type' in classification:
763
+ st.success(f"**Detected Defect:** {classification['type']}")
764
+ st.info(f"**Confidence:** {classification['severity']:.2%}")
765
+ else:
766
+ st.error(f"**Error:** {classification.get('error', 'Unknown error')}")
767
+
768
+ st.markdown("---")
769
+
770
+ with col2:
771
+ st.header("πŸ“Š Analysis Summary")
772
+
773
+ if classifications:
774
+ # Display metrics
775
+ st.markdown('<div class="metric-card">', unsafe_allow_html=True)
776
+ st.metric("Total Images", len(classifications))
777
+ st.markdown('</div>', unsafe_allow_html=True)
778
 
779
+ st.markdown('<div class="metric-card">', unsafe_allow_html=True)
780
+ st.metric("Unique Defects", len(set(classifications)))
781
+ st.markdown('</div>', unsafe_allow_html=True)
782
+
783
+ # Defect distribution
784
+ if len(classifications) > 1:
785
+ st.subheader("Defect Distribution")
786
+ defect_counts = pd.Series(classifications).value_counts()
787
+ st.bar_chart(defect_counts)
788
+
789
+ # Display class labels
790
+ st.subheader("🏷️ Supported Defect Types")
791
+ for label in class_labels:
792
+ st.write(f"β€’ {label}")
793
+
794
+ # Generate comprehensive report
795
+ if image_data_list:
796
+ st.markdown("---")
797
+ st.header("πŸ“‹ Detailed Analysis Report")
798
+
799
+ # Generate SPS recommendations
800
+ if classifications:
801
+ with st.spinner("Generating recommended solutions..."):
802
+ user_message = ", ".join(set(classifications))
803
+ mandatory_sps, optional_sps = get_sps(user_message,type)
804
+
805
+
806
+
807
+ # Display detailed results for each image
808
+ for i, image_data in enumerate(image_data_list):
809
+ with st.expander(f"πŸ“· Image {i+1} - Detailed Analysis", expanded=True):
810
+ col1, col2 = st.columns([1, 2])
811
+
812
+ with col1:
813
+ if 'file_name' in image_data:
814
+ st.write(f"**File:** {image_data['file_name']}")
815
+ if 'url' in image_data:
816
+ st.write(f"**URL:** {image_data['url'][:50]}...")
817
+
818
+ classification = image_data['defect_classification']
819
+ if 'type' in classification:
820
+ st.write(f"**Defect Type:** {classification['type']}")
821
+ st.write(f"**Severity:** {classification['severity']:.2%}")
822
+
823
+ with col2:
824
+ st.write("**OpenAI Analysis:**")
825
+ st.text_area("", image_data['openai_desc'], height=150, key=f"desc_{i}")
826
+
827
+ # Display SPS recommendations
828
+
829
+ # Export results
830
+ # Export results
831
+ ai_response = {}
832
+ boq_list = []
833
+ ids = [sps["id"] for sps in optional_sps]
834
+ sps_boq_map = {
835
+ 211:58,
836
+ 212:59,
837
+ 213:60,
838
+ 214:61,
839
+ 215:62,
840
+ 216:63,
841
+ 217:64,
842
+ 218:65,
843
+ 219:66,
844
+ 220:67,
845
+ 221:57,
846
+ 222:49
847
+ }
848
+ boq_list = list([sps_boq_map[sps_id] for sps_id in ids if sps_id in sps_boq_map])
849
+
850
+
851
+ ai_response = {
852
+ "report_id": report_submission_id,
853
+ "page_id": report_section_page_id,
854
+ "section_id": report_section_id,
855
+ "defect_type": defect_type,
856
+ "images": image_data_list,
857
+ "mandatory_sps": mandatory_sps,
858
+ "optional_sps": optional_sps,
859
+ "boq_list": boq_list
860
+ }
861
+ # if st.button("πŸ“€ Export Results as JSON", type="secondary"):
862
+ # ai_response = {
863
+ # "report_id": report_submission_id,
864
+ # "page_id": report_section_page_id,
865
+ # "section_id": report_section_id,
866
+ # "defect_type": defect_type,
867
+ # "images": image_data_list,
868
+ # "mandatory_sps": mandatory_sps,
869
+ # "optional_sps": optional_sps
870
+ # }
871
+ st.subheader("πŸ“¦ JSON Response Preview")
872
+ with st.expander("View JSON Response", expanded=False):
873
+ st.json(json.loads(json.dumps(ai_response, indent=2, ensure_ascii=False)))
874
+
875
+
876
+ # πŸ“₯ Download button
877
+ st.download_button(
878
+ label="Download JSON Report",
879
+ data=json.dumps(ai_response, indent=2),
880
+ file_name=f"defect_report_{report_submission_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
881
+ mime="application/json"
882
+ )
883
+
884
+
885
+
886
+ if __name__ == "__main__":
887
+ main()