Keshav-rejoice commited on
Commit
7f07e2c
·
verified ·
1 Parent(s): 43c62c5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +113 -0
app.py CHANGED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import base64
3
+ import openai
4
+ import numpy as np
5
+ import cv2
6
+ from tensorflow.keras.models import load_model
7
+ from keras.preprocessing.image import img_to_array
8
+ from keras.applications.inception_v3 import preprocess_input
9
+ import os
10
+ from PIL import Image
11
+ import io
12
+ st.set_page_config(page_title="Wall Defect Classifier", layout="centered")
13
+
14
+ # Set OpenAI API Key
15
+ openai.api_key = os.getenv('OPEN_AI')
16
+
17
+ # Defect categories
18
+ class_labels = [
19
+ "Floor Cracks",
20
+ "Floor Peel",
21
+ "Shade Fading",
22
+ "Air Bubble (Single Defect)",
23
+ "Spike Roller (Single Defect)"
24
+ ]
25
+
26
+ @st.cache_resource
27
+ def load_trained_model():
28
+ return load_model('my_inceptionmodelwithoutaug (1).h5')
29
+
30
+ def compress_image(image_bytes, max_size_kb=500):
31
+ img = Image.open(io.BytesIO(image_bytes))
32
+ quality = 95
33
+ output_bytes = io.BytesIO()
34
+ while True:
35
+ output_bytes.seek(0)
36
+ output_bytes.truncate()
37
+ img.save(output_bytes, format='JPEG', quality=quality)
38
+ if len(output_bytes.getvalue()) <= max_size_kb * 1024 or quality <= 5:
39
+ break
40
+ quality -= 5
41
+ return output_bytes.getvalue()
42
+
43
+ def process_image_for_openai(image_bytes):
44
+ compressed_image = compress_image(image_bytes)
45
+ return base64.b64encode(compressed_image).decode('utf-8')
46
+
47
+ # Load model once
48
+ loaded_model = load_trained_model()
49
+
50
+ # App UI
51
+
52
+ st.title("🧠 Wall Defect Classification & AI-Based Description")
53
+ st.markdown("Upload a wall surface image to detect potential defects and generate a structured AI analysis.")
54
+
55
+ uploaded_file = st.file_uploader("📤 Upload an Image", type=["jpg", "jpeg", "png"])
56
+
57
+ if uploaded_file is not None:
58
+ file_bytes = uploaded_file.getvalue()
59
+
60
+ st.image(file_bytes, caption="🖼️ Uploaded Image", use_column_width=True)
61
+
62
+ # Preprocess for prediction
63
+ input_img = cv2.imdecode(np.frombuffer(file_bytes, np.uint8), cv2.IMREAD_COLOR)
64
+ input_img_resized = cv2.resize(input_img, (256, 256))
65
+ x = img_to_array(input_img_resized)
66
+ x = np.expand_dims(x, axis=0)
67
+ x = preprocess_input(x)
68
+
69
+ preds = loaded_model.predict(x)
70
+ class_index = np.argmax(preds[0])
71
+ max_probability = preds[0][class_index]
72
+ class_name = class_labels[class_index]
73
+
74
+ # Classification Result Display
75
+ st.subheader("🔍 Classification Result")
76
+ st.success(f"**Predicted Defect:** {class_name}")
77
+ st.progress(min(int(max_probability * 100), 100))
78
+ st.markdown(f"**Confidence Level:** {max_probability:.2%}")
79
+
80
+ if max_probability < 0.59:
81
+ st.warning("⚠️ The confidence score is below 59%. Please manually verify this result.")
82
+ else:
83
+ compressed_base64 = process_image_for_openai(file_bytes)
84
+ ai_prompt = (
85
+ f"Our trained model predicts the following defect: {class_name}. "
86
+ f"Can you analyze the following image and generate AI-based descriptions "
87
+
88
+ f"for this defect? The output format should be:\n"
89
+ f"Category ID: <Insert Category ID>\n"
90
+ f"Title: <Short Title of the Defect>\n"
91
+ f"Description: <A concise, technical description in 100 words or less>"
92
+ )
93
+
94
+ st.subheader("Generating AI-Based Analysis...")
95
+ try:
96
+ response = openai.ChatCompletion.create(
97
+ model="gpt-4o",
98
+ messages=[
99
+ {
100
+ "role": "user",
101
+ "content": [
102
+ {"type": "text", "text": ai_prompt},
103
+ {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{compressed_base64}"}}
104
+ ]
105
+ }
106
+ ],
107
+ max_tokens=300,
108
+ )
109
+ ai_description = response.choices[0].message.content
110
+ st.subheader("📝 AI-Generated Defect Description")
111
+ st.text_area("Output", value=ai_description.strip(), height=250)
112
+ except Exception as e:
113
+ st.error(f"❌ An error occurred while generating the description:\n{e}")