Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -53,66 +53,66 @@ loaded_model = load_trained_model()
|
|
53 |
|
54 |
st.title("π§ Wall Defect Classification & AI-Based Description")
|
55 |
category_choice = st.selectbox("π οΈ Select Defect Category Type:", ["Flooring"], index=0)
|
56 |
-
|
57 |
-
st.markdown("Upload a wall surface image to detect potential defects and generate a structured AI analysis.")
|
58 |
-
|
59 |
-
|
60 |
-
uploaded_file = st.file_uploader("π€ Upload an Image", type=["jpg", "jpeg", "png"])
|
61 |
-
|
62 |
-
if uploaded_file is not None:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
if max_probability < 0.59:
|
86 |
-
st.warning("β οΈ The confidence score is below 59%. Please manually verify this result.")
|
87 |
-
else:
|
88 |
-
compressed_base64 = process_image_for_openai(file_bytes)
|
89 |
-
ai_prompt = (
|
90 |
-
f"Our trained model predicts the following defect: {class_name}. "
|
91 |
-
f"Can you analyze the following image and generate AI-based descriptions "
|
92 |
-
|
93 |
-
f"for this defect? The output format should be:\n"
|
94 |
-
f"Category ID: <Insert Category ID>\n"
|
95 |
-
f"Title: <Short Title of the Defect>\n"
|
96 |
-
f"Description: <A concise, technical description in 100 words or less>"
|
97 |
-
)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
],
|
112 |
-
max_tokens=300,
|
113 |
)
|
114 |
-
|
115 |
-
st.subheader("
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
st.title("π§ Wall Defect Classification & AI-Based Description")
|
55 |
category_choice = st.selectbox("π οΈ Select Defect Category Type:", ["Flooring"], index=0)
|
56 |
+
if category_choice == "Flooring":
|
57 |
+
st.markdown("Upload a wall surface image to detect potential defects and generate a structured AI analysis.")
|
58 |
+
|
59 |
+
|
60 |
+
uploaded_file = st.file_uploader("π€ Upload an Image", type=["jpg", "jpeg", "png"])
|
61 |
+
|
62 |
+
if uploaded_file is not None:
|
63 |
+
file_bytes = uploaded_file.getvalue()
|
64 |
+
|
65 |
+
st.image(file_bytes, caption="πΌοΈ Uploaded Image", use_column_width=True)
|
66 |
+
|
67 |
+
# Preprocess for prediction
|
68 |
+
input_img = cv2.imdecode(np.frombuffer(file_bytes, np.uint8), cv2.IMREAD_COLOR)
|
69 |
+
input_img_resized = cv2.resize(input_img, (256, 256))
|
70 |
+
x = img_to_array(input_img_resized)
|
71 |
+
x = np.expand_dims(x, axis=0)
|
72 |
+
x = preprocess_input(x)
|
73 |
+
|
74 |
+
preds = loaded_model.predict(x)
|
75 |
+
class_index = np.argmax(preds[0])
|
76 |
+
max_probability = preds[0][class_index]
|
77 |
+
class_name = class_labels[class_index]
|
78 |
+
|
79 |
+
# Classification Result Display
|
80 |
+
st.subheader("π Classification Result")
|
81 |
+
st.success(f"**Predicted Defect:** {class_name}")
|
82 |
+
st.progress(min(int(max_probability * 100), 100))
|
83 |
+
st.markdown(f"**Confidence Level:** {max_probability:.2%}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
if max_probability < 0.59:
|
86 |
+
st.warning("β οΈ The confidence score is below 59%. Please manually verify this result.")
|
87 |
+
else:
|
88 |
+
compressed_base64 = process_image_for_openai(file_bytes)
|
89 |
+
ai_prompt = (
|
90 |
+
f"Our trained model predicts the following defect: {class_name}. "
|
91 |
+
f"Can you analyze the following image and generate AI-based descriptions "
|
92 |
+
|
93 |
+
f"for this defect? The output format should be:\n"
|
94 |
+
f"Category ID: <Insert Category ID>\n"
|
95 |
+
f"Title: <Short Title of the Defect>\n"
|
96 |
+
f"Description: <A concise, technical description in 100 words or less>"
|
|
|
|
|
97 |
)
|
98 |
+
|
99 |
+
st.subheader("Generating AI-Based Analysis...")
|
100 |
+
try:
|
101 |
+
response = openai.ChatCompletion.create(
|
102 |
+
model="gpt-4o",
|
103 |
+
messages=[
|
104 |
+
{
|
105 |
+
"role": "user",
|
106 |
+
"content": [
|
107 |
+
{"type": "text", "text": ai_prompt},
|
108 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{compressed_base64}"}}
|
109 |
+
]
|
110 |
+
}
|
111 |
+
],
|
112 |
+
max_tokens=300,
|
113 |
+
)
|
114 |
+
ai_description = response.choices[0].message.content
|
115 |
+
st.subheader("π AI-Generated Defect Description")
|
116 |
+
st.text_area("Output", value=ai_description.strip(), height=250)
|
117 |
+
except Exception as e:
|
118 |
+
st.error(f"β An error occurred while generating the description:\n{e}")
|