Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,11 +14,10 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
14 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
15 |
|
16 |
# load text-to-speech checkpoint and speaker embeddings
|
17 |
-
processor = SpeechT5Processor.from_pretrained("
|
18 |
|
19 |
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
20 |
-
model = VitsModel.from_pretrained("
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa")
|
22 |
|
23 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
24 |
|
@@ -27,30 +26,20 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
27 |
|
28 |
|
29 |
def translate(audio):
|
30 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "
|
31 |
-
print ('Translated text : ', outputs["text"])
|
32 |
return outputs["text"]
|
33 |
|
34 |
|
35 |
def synthesise(text):
|
36 |
-
inputs =
|
37 |
-
|
38 |
-
|
39 |
-
speech = model(**inputs)
|
40 |
-
|
41 |
-
print (speech)
|
42 |
-
|
43 |
-
return speech.waveform
|
44 |
|
45 |
-
def speech_to_speech_translation_fix(audio,voice_preset="v2/zh_speaker_1"):
|
46 |
-
synthesised_rate,synthesised_speech = speech_to_speech_translation(audio,voice_preset)
|
47 |
-
return synthesised_rate,synthesised_speech.T
|
48 |
|
49 |
def speech_to_speech_translation(audio):
|
50 |
translated_text = translate(audio)
|
51 |
synthesised_speech = synthesise(translated_text)
|
52 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
53 |
-
synthesised_speech = speech_to_speech_translation_fix(synthesised_speech)
|
54 |
return 16000, synthesised_speech
|
55 |
|
56 |
|
|
|
14 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
15 |
|
16 |
# load text-to-speech checkpoint and speaker embeddings
|
17 |
+
processor = SpeechT5Processor.from_pretrained("vadhri/speecht5_finetuned_voxpopuli_nl")
|
18 |
|
19 |
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
20 |
+
model = VitsModel.from_pretrained("vadhri/speecht5_finetuned_voxpopuli_nl").to(device)
|
|
|
21 |
|
22 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
23 |
|
|
|
26 |
|
27 |
|
28 |
def translate(audio):
|
29 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
|
|
30 |
return outputs["text"]
|
31 |
|
32 |
|
33 |
def synthesise(text):
|
34 |
+
inputs = processor(text=text, return_tensors="pt")
|
35 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
36 |
+
return speech.cpu()
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
38 |
|
39 |
def speech_to_speech_translation(audio):
|
40 |
translated_text = translate(audio)
|
41 |
synthesised_speech = synthesise(translated_text)
|
42 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
|
|
43 |
return 16000, synthesised_speech
|
44 |
|
45 |
|